On semiregular families of triangulations and linear interpolation
Applications of Mathematics, Tome 36 (1991) no. 3, pp. 223-232.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider triangulations formed by triangular elements. For the standard linear interpolation operator $\pi__h$ we prove the interpolation order to be $\left\|v-{\pi__h} v\right\|_{1,p}\leq Ch\left|v\right|_{2,p}$ for $p>1$ provided the corresponding family of triangulations is only semiregular. In such a case the well-known Zlámal's condition upon the minimum angle need not be satisfied.
DOI : 10.21136/AM.1991.104461
Classification : 41A05, 65D05, 65N30
Keywords: finite elements; linear interpolation; maximum angle condition; Zlámal’s condition
@article{10_21136_AM_1991_104461,
     author = {K\v{r}{\'\i}\v{z}ek, Michal},
     title = {On semiregular families of triangulations and linear interpolation},
     journal = {Applications of Mathematics},
     pages = {223--232},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1991},
     doi = {10.21136/AM.1991.104461},
     mrnumber = {1109126},
     zbl = {0728.41003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1991.104461/}
}
TY  - JOUR
AU  - Křížek, Michal
TI  - On semiregular families of triangulations and linear interpolation
JO  - Applications of Mathematics
PY  - 1991
SP  - 223
EP  - 232
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1991.104461/
DO  - 10.21136/AM.1991.104461
LA  - en
ID  - 10_21136_AM_1991_104461
ER  - 
%0 Journal Article
%A Křížek, Michal
%T On semiregular families of triangulations and linear interpolation
%J Applications of Mathematics
%D 1991
%P 223-232
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1991.104461/
%R 10.21136/AM.1991.104461
%G en
%F 10_21136_AM_1991_104461
Křížek, Michal. On semiregular families of triangulations and linear interpolation. Applications of Mathematics, Tome 36 (1991) no. 3, pp. 223-232. doi : 10.21136/AM.1991.104461. http://geodesic.mathdoc.fr/articles/10.21136/AM.1991.104461/

Cité par Sources :