On non-ergodic versions of limit theorems
Applications of Mathematics, Tome 34 (1989) no. 5, pp. 351-363.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The author investigates non ergodic versions of several well known limit theorems for strictly stationary processes. In some cases, the assumptions which are given with respect to general invariant measure, guarantee the validity of the theorem with respect to ergodic components of the measure. In other cases, the limit theorem can fail for all ergodic components, while for the original invariant measure it holds.
DOI : 10.21136/AM.1989.104363
Classification : 28D05, 60B10, 60F05, 60F17, 60G10, 60G40
Keywords: central limit theorem for martingale differences; ergodic decomposition; invariance principle; invariant measure; law of iterated logarithm; strictly stationary sequence
@article{10_21136_AM_1989_104363,
     author = {Voln\'y, Dalibor},
     title = {On non-ergodic versions of limit theorems},
     journal = {Applications of Mathematics},
     pages = {351--363},
     publisher = {mathdoc},
     volume = {34},
     number = {5},
     year = {1989},
     doi = {10.21136/AM.1989.104363},
     mrnumber = {1014076},
     zbl = {0707.60027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104363/}
}
TY  - JOUR
AU  - Volný, Dalibor
TI  - On non-ergodic versions of limit theorems
JO  - Applications of Mathematics
PY  - 1989
SP  - 351
EP  - 363
VL  - 34
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104363/
DO  - 10.21136/AM.1989.104363
LA  - en
ID  - 10_21136_AM_1989_104363
ER  - 
%0 Journal Article
%A Volný, Dalibor
%T On non-ergodic versions of limit theorems
%J Applications of Mathematics
%D 1989
%P 351-363
%V 34
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104363/
%R 10.21136/AM.1989.104363
%G en
%F 10_21136_AM_1989_104363
Volný, Dalibor. On non-ergodic versions of limit theorems. Applications of Mathematics, Tome 34 (1989) no. 5, pp. 351-363. doi : 10.21136/AM.1989.104363. http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104363/

Cité par Sources :