Minimum mean square error estimation
Applications of Mathematics, Tome 24 (1979) no. 5, pp. 382-388.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In many cases we can consider the regression parameters as realizations of a random variable. In these situations the minimum mean square error estimator seems to be useful and important. The explicit form of this estimator is given in the case that both the covariance matrices of the random parameters and those of the error vector are singular.
DOI : 10.21136/AM.1979.103818
Classification : 62H12, 62J05
Keywords: minimum mean square error estimation
@article{10_21136_AM_1979_103818,
     author = {Wimmer, Gejza},
     title = {Minimum mean square error estimation},
     journal = {Applications of Mathematics},
     pages = {382--388},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {1979},
     doi = {10.21136/AM.1979.103818},
     mrnumber = {0547041},
     zbl = {0446.62066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1979.103818/}
}
TY  - JOUR
AU  - Wimmer, Gejza
TI  - Minimum mean square error estimation
JO  - Applications of Mathematics
PY  - 1979
SP  - 382
EP  - 388
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1979.103818/
DO  - 10.21136/AM.1979.103818
LA  - en
ID  - 10_21136_AM_1979_103818
ER  - 
%0 Journal Article
%A Wimmer, Gejza
%T Minimum mean square error estimation
%J Applications of Mathematics
%D 1979
%P 382-388
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1979.103818/
%R 10.21136/AM.1979.103818
%G en
%F 10_21136_AM_1979_103818
Wimmer, Gejza. Minimum mean square error estimation. Applications of Mathematics, Tome 24 (1979) no. 5, pp. 382-388. doi : 10.21136/AM.1979.103818. http://geodesic.mathdoc.fr/articles/10.21136/AM.1979.103818/

Cité par Sources :