On Signorini problem for von Kármán equations. The case of angular domain
Applications of Mathematics, Tome 24 (1979) no. 5, pp. 355-371 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper deals with the generalized Signorini problem. The used method of pseudomonotone semicoercive operator inequality is introduced in the paper by O. John. The existence result for smooth domains from the paper by O. John is extended to technically significant "angular" domains. The crucial point of the proof is the estimation of the nonlinear term which appears in the operator form of the problem. The substantial technical difficulties connected with non-smoothness of the boundary are overcome by means of a proper choice of the auxiliary function.
The paper deals with the generalized Signorini problem. The used method of pseudomonotone semicoercive operator inequality is introduced in the paper by O. John. The existence result for smooth domains from the paper by O. John is extended to technically significant "angular" domains. The crucial point of the proof is the estimation of the nonlinear term which appears in the operator form of the problem. The substantial technical difficulties connected with non-smoothness of the boundary are overcome by means of a proper choice of the auxiliary function.
DOI : 10.21136/AM.1979.103816
Classification : 35J60, 35J65, 35R20, 47H05, 49J40, 73G05, 74A55, 74K20, 74M15, 74S30
Keywords: first and second boundary value problems; at least one W2, 2-solution; polar form has no non-trivial kernel; inhomogeneities fulfil certain sign condition; pseudomonotone semicoercive variational inequalities
@article{10_21136_AM_1979_103816,
     author = {Franc\r{u}, Jan},
     title = {On {Signorini} problem for von {K\'arm\'an} equations. {The} case of angular domain},
     journal = {Applications of Mathematics},
     pages = {355--371},
     year = {1979},
     volume = {24},
     number = {5},
     doi = {10.21136/AM.1979.103816},
     mrnumber = {0547039},
     zbl = {0479.73041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1979.103816/}
}
TY  - JOUR
AU  - Franců, Jan
TI  - On Signorini problem for von Kármán equations. The case of angular domain
JO  - Applications of Mathematics
PY  - 1979
SP  - 355
EP  - 371
VL  - 24
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1979.103816/
DO  - 10.21136/AM.1979.103816
LA  - en
ID  - 10_21136_AM_1979_103816
ER  - 
%0 Journal Article
%A Franců, Jan
%T On Signorini problem for von Kármán equations. The case of angular domain
%J Applications of Mathematics
%D 1979
%P 355-371
%V 24
%N 5
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1979.103816/
%R 10.21136/AM.1979.103816
%G en
%F 10_21136_AM_1979_103816
Franců, Jan. On Signorini problem for von Kármán equations. The case of angular domain. Applications of Mathematics, Tome 24 (1979) no. 5, pp. 355-371. doi: 10.21136/AM.1979.103816

[1] Hlaváček I., Naumann J.: Inhomogeneous boundary value problems for the von Kármán equations, I. Aplikace matematiky 19 (1974), 253 - 269. | MR

[2] Jakovlev G. N.: Boundary properties of functions of class $W_p^1$ on domains with angular points. (Russian). DANSSSR, 140 (1961), 73-76. | MR

[3] John O.: On Signorini problem for von Kármán equations. Aplikace matematiky 22 (1977), 52-68. | MR | Zbl

[4] John O., Nečas J.: On the solvability of von Kármán equations. Aplikace matematiky 20 (1975), 48-62. | MR

[5] Knightly G. H.: An existence theorem for the von Kármán equations. Arch. Rat. Mech. Anal., 27 (1967), 233-242. | DOI | MR | Zbl

[6] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. | MR

Cité par Sources :