On a conjugate semi-variational method for parabolic equations
Applications of Mathematics, Tome 18 (1973) no. 6, pp. 434-444.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Initial-boundary value problems for parabolic equations of the second order can be formulated, like the elliptic problems, also by means of conjugate variables, i.e. in terms of the cogradient vector function. The conjugate problem is shown to belong to a class of abstract parabolic equations with two positive operators, which have been analysed in a previous author's paper. The first and second semi-variational approximations to the solution of the conjugate problem are presented together with some error estimates.
DOI : 10.21136/AM.1973.103499
Classification : 35B45, 35K20, 65N30
@article{10_21136_AM_1973_103499,
     author = {Hlav\'a\v{c}ek, Ivan},
     title = {On a conjugate semi-variational method for parabolic equations},
     journal = {Applications of Mathematics},
     pages = {434--444},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {1973},
     doi = {10.21136/AM.1973.103499},
     mrnumber = {0404858},
     zbl = {0278.35048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103499/}
}
TY  - JOUR
AU  - Hlaváček, Ivan
TI  - On a conjugate semi-variational method for parabolic equations
JO  - Applications of Mathematics
PY  - 1973
SP  - 434
EP  - 444
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103499/
DO  - 10.21136/AM.1973.103499
LA  - en
ID  - 10_21136_AM_1973_103499
ER  - 
%0 Journal Article
%A Hlaváček, Ivan
%T On a conjugate semi-variational method for parabolic equations
%J Applications of Mathematics
%D 1973
%P 434-444
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103499/
%R 10.21136/AM.1973.103499
%G en
%F 10_21136_AM_1973_103499
Hlaváček, Ivan. On a conjugate semi-variational method for parabolic equations. Applications of Mathematics, Tome 18 (1973) no. 6, pp. 434-444. doi : 10.21136/AM.1973.103499. http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103499/

Cité par Sources :