Periodic solutions of the first boundary value problem for a linear and weakly nonlinear heat equation
Applications of Mathematics, Tome 13 (1968) no. 6, pp. 466-477 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

One investigates the existence of an $\omega$-periodic solution of the problem $u_t=u_{xx}+cu+g(t,x)+\epsilon f(t,x,u,u_x,\epsilon),\ u(t,0)=h_0(t)+\epsilon \chi_0(t,u(t,0),u(t,\pi)), u(t,\pi)=h_1(t)+\epsilon \chi_1(t,u(t,0), u(t,\pi))$, provided the functions $g,f,h_0,h_1,\chi_0,\chi_1$ are sufficiently smooth and $\omega$-periodic in $t$. If $c\neq k^2$, $k$ natural, such a solution always exists for sufficiently small $\epsilon >0$. On the other hand, if $c=l^2$, $l$ natural, some additional conditions have to be satisfied.
One investigates the existence of an $\omega$-periodic solution of the problem $u_t=u_{xx}+cu+g(t,x)+\epsilon f(t,x,u,u_x,\epsilon),\ u(t,0)=h_0(t)+\epsilon \chi_0(t,u(t,0),u(t,\pi)), u(t,\pi)=h_1(t)+\epsilon \chi_1(t,u(t,0), u(t,\pi))$, provided the functions $g,f,h_0,h_1,\chi_0,\chi_1$ are sufficiently smooth and $\omega$-periodic in $t$. If $c\neq k^2$, $k$ natural, such a solution always exists for sufficiently small $\epsilon >0$. On the other hand, if $c=l^2$, $l$ natural, some additional conditions have to be satisfied.
DOI : 10.21136/AM.1968.103196
Classification : 35-12
Keywords: partial differential equations
@article{10_21136_AM_1968_103196,
     author = {\v{S}\v{t}astnov\'a, V\v{e}nceslava and Vejvoda, Otto},
     title = {Periodic solutions of the first boundary value problem for a linear and weakly nonlinear heat equation},
     journal = {Applications of Mathematics},
     pages = {466--477},
     year = {1968},
     volume = {13},
     number = {6},
     doi = {10.21136/AM.1968.103196},
     mrnumber = {0243188},
     zbl = {0165.44302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103196/}
}
TY  - JOUR
AU  - Šťastnová, Věnceslava
AU  - Vejvoda, Otto
TI  - Periodic solutions of the first boundary value problem for a linear and weakly nonlinear heat equation
JO  - Applications of Mathematics
PY  - 1968
SP  - 466
EP  - 477
VL  - 13
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103196/
DO  - 10.21136/AM.1968.103196
LA  - en
ID  - 10_21136_AM_1968_103196
ER  - 
%0 Journal Article
%A Šťastnová, Věnceslava
%A Vejvoda, Otto
%T Periodic solutions of the first boundary value problem for a linear and weakly nonlinear heat equation
%J Applications of Mathematics
%D 1968
%P 466-477
%V 13
%N 6
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103196/
%R 10.21136/AM.1968.103196
%G en
%F 10_21136_AM_1968_103196
Šťastnová, Věnceslava; Vejvoda, Otto. Periodic solutions of the first boundary value problem for a linear and weakly nonlinear heat equation. Applications of Mathematics, Tome 13 (1968) no. 6, pp. 466-477. doi: 10.21136/AM.1968.103196

[1] P. Fife: Solutions of parabolic boundary problems existing for all time. Arch. Rat. Mech. Anal. 76, 1964, 155-186. | DOI | MR | Zbl

[2] И. И. Шмулев: Периодические решения первой краевой задачи для параболических уравнений. Математический сборник 66 (108), 3, 1965, 398-410. | MR | Zbl

[3] J. L. Lions: Sur certain équations paraboliques non linéaires. Bull. Soc. Math. France, 93, 2, 1965, 155-176. | MR

[4] T. Kusano: A remark on a periodic boundary problem of parabolic type. Proc. Jap. Acad. XLII, I, 1966, 10-12. | MR | Zbl

[5] T. Kusano: Periodic solutions of the first boundary problem for quasilinear parabolic equations of second order. Funkc. Ekvac. 9, 1 - 3, 1966, 129-138. | MR | Zbl

[6] O. Vejvoda: Periodic solutions of a linear and weakly nonlinear wave equation in one dimension. I. Czech. Math. J. 14 (89), 1964, 341-382. | MR

Cité par Sources :