Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series
@article{10_14708_am_v7i0_578, author = {Andrzej Schinzel}, title = {Theory of number in {Paul} {Erd\"os'} papers}, journal = {Antiquitates Mathematicae}, pages = { 151--156}, publisher = {mathdoc}, volume = {7}, year = {2013}, doi = {10.14708/am.v7i0.578}, language = {pl}, url = {http://geodesic.mathdoc.fr/articles/10.14708/am.v7i0.578/} }
Andrzej Schinzel. Theory of number in Paul Erdös' papers. Antiquitates Mathematicae, Tome 7 (2013), pp. 151-156. doi : 10.14708/am.v7i0.578. http://geodesic.mathdoc.fr/articles/10.14708/am.v7i0.578/
Prace innych autorow
[1 ] K. Ford, Integers with a divisor in [y, 2y], in: Anatomy o f Integers, CRM Proc. Lecture Notes 46, Amer. Math. Soc., Providence, RI, 2008, 65-80.
[2 ] D. Goldfeld, The elementary p ro o f o f the prim e number theorem, an historical perspective, in: Number Theory, Springer 2004,179-192.
[3 ] Yu. V. Linnik, On Erdos s theorem on the addition o f numerical sequences, Rec. Math. [Mat. Sbomik] N.S. 10(52) (1942), 67-78.
[4 ] H. L. Montgomery and R. C. Vaughan, On the Erdos.Fuchs theorems, in: A Tribute to Paul Erdos, Cambridge Univ. Press 1990, 331-338.
[5 ] M. Nair, Power free values o f polynomials, Mathematika 23 (1976), 159-183.
[6 ] D. J. Newman, The evaluation o f the constant in the formula fo r the number ofpartitions o f nn, Amer. J. Math. 73 (1951), 599-601.
[7 ] J. Pintz, Very large gaps between consecutive primes, J. Number Theory 63 (1997), 2 86-301.
[8 ] C. Pomerance, On the distribution o f amicable numbers I— II, J. Reine Angew. Math. 293/294 (1977), 217-222; 325 (1981), 183-188.
[9 ] A. Sarkozy, Paul Erdós (1913-1986), Acta Arith. 81 (1997), 301-343. [10] R. C. Vaughan, Bounds fo r the coefficients o f cyclotomic polynomials, Michigan Math. J. 21 (1974), 289-295.
[11] R. C. Vaughan, The Hardy—Littlewood Method, Cambridge Univ. Press 1981.
[12] M. D. Vose, Egyptian fractions, Bull. London Math. Soc. 17 (1985), 21-24.
[13] E. Wirsing, Bemerkung zu der Arbeit iiber volkommene Zahlen, Math. Ann. 137 (1959), 316-318.
Cité par Sources :