Theory of number in Paul Erdös' papers
Antiquitates Mathematicae, Tome 7 (2013), pp. 151-156.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Paul Erdös (1913-1996) was the second most productive mathematician in history(greater legacy had only Euler).He left 1548 works and the number of his co-authors,the largest in history,is about 500.About 600 papers of his,including the approximately 70\% co-authored, are discussed in the obituary published in Acta Arithmetica by A.Sarkozy (1997). This paper repeats, in many places, the information given by Sarkozy, however, the story is built differently, in order of number theory chapters listed in the MSC2010.
DOI : 10.14708/am.v7i0.578
Classification : 01A50, 01A55, 01A60
Mots-clés : problems, conjectures, number theory, foundations of mathematics, history of mathematics
@article{10_14708_am_v7i0_578,
     author = {Andrzej Schinzel},
     title = {Theory of number in {Paul} {Erd\"os'} papers},
     journal = {Antiquitates Mathematicae},
     pages = { 151--156},
     publisher = {mathdoc},
     volume = {7},
     year = {2013},
     doi = {10.14708/am.v7i0.578},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/am.v7i0.578/}
}
TY  - JOUR
AU  - Andrzej Schinzel
TI  - Theory of number in Paul Erdös' papers
JO  - Antiquitates Mathematicae
PY  - 2013
SP  -  151
EP  - 156
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/am.v7i0.578/
DO  - 10.14708/am.v7i0.578
LA  - pl
ID  - 10_14708_am_v7i0_578
ER  - 
%0 Journal Article
%A Andrzej Schinzel
%T Theory of number in Paul Erdös' papers
%J Antiquitates Mathematicae
%D 2013
%P  151-156
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/am.v7i0.578/
%R 10.14708/am.v7i0.578
%G pl
%F 10_14708_am_v7i0_578
Andrzej Schinzel. Theory of number in Paul Erdös' papers. Antiquitates Mathematicae, Tome 7 (2013), pp.  151-156. doi : 10.14708/am.v7i0.578. http://geodesic.mathdoc.fr/articles/10.14708/am.v7i0.578/

Prace innych autorow

[1 ] K. Ford, Integers with a divisor in [y, 2y], in: Anatomy o f Integers, CRM Proc. Lecture Notes 46, Amer. Math. Soc., Providence, RI, 2008, 65-80.

[2 ] D. Goldfeld, The elementary p ro o f o f the prim e number theorem, an historical perspective, in: Number Theory, Springer 2004,179-192.

[3 ] Yu. V. Linnik, On Erdos s theorem on the addition o f numerical sequences, Rec. Math. [Mat. Sbomik] N.S. 10(52) (1942), 67-78.

[4 ] H. L. Montgomery and R. C. Vaughan, On the Erdos.Fuchs theorems, in: A Tribute to Paul Erdos, Cambridge Univ. Press 1990, 331-338.

[5 ] M. Nair, Power free values o f polynomials, Mathematika 23 (1976), 159-183.

[6 ] D. J. Newman, The evaluation o f the constant in the formula fo r the number ofpartitions o f nn, Amer. J. Math. 73 (1951), 599-601.

[7 ] J. Pintz, Very large gaps between consecutive primes, J. Number Theory 63 (1997), 2 86-301.

[8 ] C. Pomerance, On the distribution o f amicable numbers I— II, J. Reine Angew. Math. 293/294 (1977), 217-222; 325 (1981), 183-188.

[9 ] A. Sarkozy, Paul Erdós (1913-1986), Acta Arith. 81 (1997), 301-343. [10] R. C. Vaughan, Bounds fo r the coefficients o f cyclotomic polynomials, Michigan Math. J. 21 (1974), 289-295.

[11] R. C. Vaughan, The Hardy—Littlewood Method, Cambridge Univ. Press 1981.

[12] M. D. Vose, Egyptian fractions, Bull. London Math. Soc. 17 (1985), 21-24.

[13] E. Wirsing, Bemerkung zu der Arbeit iiber volkommene Zahlen, Math. Ann. 137 (1959), 316-318.

Cité par Sources :