Sierpinski's contribution to the number theory
Antiquitates Mathematicae, Tome 5 (2011), p. 227–236.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

A survey of Sierpiński's papers devoted to analytic number theory, to expansions of real numbers into series and products, to diophantine approximation and to elementary number theory.
DOI : 10.14708/am.v5i0.585
Classification : 01A50, 01A55, 01A60
Mots-clés : number theory, prime numbers, history of mathematics
@article{10_14708_am_v5i0_585,
     author = {Andrzej Schinzel},
     title = {Sierpinski's contribution to the number theory},
     journal = {Antiquitates Mathematicae},
     pages = { 227{\textendash}236},
     publisher = {mathdoc},
     volume = {5},
     year = {2011},
     doi = {10.14708/am.v5i0.585},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/am.v5i0.585/}
}
TY  - JOUR
AU  - Andrzej Schinzel
TI  - Sierpinski's contribution to the number theory
JO  - Antiquitates Mathematicae
PY  - 2011
SP  -  227–236
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/am.v5i0.585/
DO  - 10.14708/am.v5i0.585
LA  - pl
ID  - 10_14708_am_v5i0_585
ER  - 
%0 Journal Article
%A Andrzej Schinzel
%T Sierpinski's contribution to the number theory
%J Antiquitates Mathematicae
%D 2011
%P  227–236
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/am.v5i0.585/
%R 10.14708/am.v5i0.585
%G pl
%F 10_14708_am_v5i0_585
Andrzej Schinzel. Sierpinski's contribution to the number theory. Antiquitates Mathematicae, Tome 5 (2011), p.  227–236. doi : 10.14708/am.v5i0.585. http://geodesic.mathdoc.fr/articles/10.14708/am.v5i0.585/

[1] V. Becher, S. Figueira,

An example of a computable absolutely normal number,

Theor. Computer Sc. 270 (2002), 947-958.

[2] B. M. Bissinger, A generalization of continued fractions, Buli. Amer. Math. Soc. 50 (1944), 869-876.

[3] E. Borel, Les probabilites denombrables et leurs applications artihmetiques, Rend. Circ. Mat. Palermo 27 (1909), 247-271.

[4] F. Engel, Entwicklung der Zahlen nach Stammbruchen, Verhandl. 52, Versammlung deutscher Philologen und Schulmanner in Marburg von 29. September bis 3. Oktober 1913, Leipzig 1914, 190-191.

[5] P. Erdos and A. Schinzel, Distribution of the values of a class of arithmetical func tions, Acta Arith. 6 (1961), 473-485, poprawiona wersja w A. Schinzel, Selecta, vol. 2 , 877-889.

[6] P. Erdos, On a problem o f Sierpiński, Acta Arith. 11 (1965), 189-192.

[7] S. Finch, Mathematical constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge, 2003.

[8] R. K. Guy, Unsolued problems in number theory, 3rd ed., Springer.

[9] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. (3) 87 (2003), 591-609.

[10] J. F. Koksma, Diophantische Approximationen, Berlin 1935.

[11] M. Kühleitner,

On a question of A. Schinzel concerning the sum $\sum_{n\leq x}(r(n))^2$

, in: Osterreichisch-Ungarisch-Slovakisches Kolloquium fiber Zahlenthe- orie (Marie Trost 1992), Grazer Math. Ber. 318, Karl-Franzens-Univ. Graz, Graz 1993, 63-67.

[12] E. Landau, Vorlesungen iiber Zahlentheorie, Bd. II, Leipzig 1927.

[13] W. J. LeVeque, Reuiew of [XIII], Mathematical Reviews 51, No 116, (1966).

[14] H. Maier, Chains oflarge gaps between consecutiue primes, Adv. Math. 39 (1981), 257-269.

[15] S. Ramanujan, Some formulae in the analytic theory of numbers, Messenger of Math. (2) 45 (1916), 81-84; Collected papers, Cambridge 1927, 113-115.

[16] E. Я. Ремез,

О

знакопеременных

рядах

,

которые

могут

быть

связаны

с

двумя

алгоритмами

М

.

В

.

Остроградского

для

при

­

ближения

иррациональных

чисел

,

Успехи Мат. Наук (н.с.) 6 (1951), вып. 5 (45), 33-42.

[17] A. Schinzel, On an analytic problem considered by Sierpiński and Ramanujan, in: New Trends in Probability and Statistics, vol. 2 , Analytie and Probabilistic Methods in Number Theory, VSP Utrecht & TEV Vilnius 1992, 165-171; Selecta, vol. 2, 1217-1223.

[18] A. Schinzel, Historia teorii liczb w Polsce w latach 1851-1950, Wiadom. Mat. 30 (1993), 19-50.

[19] B. M. Stewart, Theory of numbers, New York-London 1964.

[20] G. Stratemeyer, Entwicklung positiver Zahlen nach Strammbruchen (Dissertation), Mitteil. math. Seminars Univ. Gieissen, Bd II, H. 20 (1932), 3-10, 25.

[21] М. И. Стронина,

Целые

точки

на

круговых

конусах

,

Изв. Высш. Учебн. Завед. Математика 1969, вып. 8 (87), 112-116.

[22] A. Walfisz, Teilerprobleme, Math. Z. 26 (1927), 66- 88.

[23] D. Wolke, Primes with preassigned digits, Acta Arith. 119 (2005), 201- 203.

Cité par Sources :