Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series
@article{10_14708_am_v5i0_585, author = {Andrzej Schinzel}, title = {Sierpinski's contribution to the number theory}, journal = {Antiquitates Mathematicae}, pages = { 227{\textendash}236}, publisher = {mathdoc}, volume = {5}, year = {2011}, doi = {10.14708/am.v5i0.585}, language = {pl}, url = {http://geodesic.mathdoc.fr/articles/10.14708/am.v5i0.585/} }
Andrzej Schinzel. Sierpinski's contribution to the number theory. Antiquitates Mathematicae, Tome 5 (2011), p. 227–236. doi : 10.14708/am.v5i0.585. http://geodesic.mathdoc.fr/articles/10.14708/am.v5i0.585/
[1] V. Becher, S. Figueira,
An example of a computable absolutely normal number,
Theor. Computer Sc. 270 (2002), 947-958.
[2] B. M. Bissinger, A generalization of continued fractions, Buli. Amer. Math. Soc. 50 (1944), 869-876.
[3] E. Borel, Les probabilites denombrables et leurs applications artihmetiques, Rend. Circ. Mat. Palermo 27 (1909), 247-271.
[4] F. Engel, Entwicklung der Zahlen nach Stammbruchen, Verhandl. 52, Versammlung deutscher Philologen und Schulmanner in Marburg von 29. September bis 3. Oktober 1913, Leipzig 1914, 190-191.
[5] P. Erdos and A. Schinzel, Distribution of the values of a class of arithmetical func tions, Acta Arith. 6 (1961), 473-485, poprawiona wersja w A. Schinzel, Selecta, vol. 2 , 877-889.
[6] P. Erdos, On a problem o f Sierpiński, Acta Arith. 11 (1965), 189-192.
[7] S. Finch, Mathematical constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge, 2003.
[8] R. K. Guy, Unsolued problems in number theory, 3rd ed., Springer.
[9] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. (3) 87 (2003), 591-609.
[10] J. F. Koksma, Diophantische Approximationen, Berlin 1935.
[11] M. Kühleitner,
On a question of A. Schinzel concerning the sum $\sum_{n\leq x}(r(n))^2$
, in: Osterreichisch-Ungarisch-Slovakisches Kolloquium fiber Zahlenthe- orie (Marie Trost 1992), Grazer Math. Ber. 318, Karl-Franzens-Univ. Graz, Graz 1993, 63-67.
[12] E. Landau, Vorlesungen iiber Zahlentheorie, Bd. II, Leipzig 1927.
[13] W. J. LeVeque, Reuiew of [XIII], Mathematical Reviews 51, No 116, (1966).
[14] H. Maier, Chains oflarge gaps between consecutiue primes, Adv. Math. 39 (1981), 257-269.
[15] S. Ramanujan, Some formulae in the analytic theory of numbers, Messenger of Math. (2) 45 (1916), 81-84; Collected papers, Cambridge 1927, 113-115.
[16] E. Я. Ремез,
О
знакопеременных
рядах
,
которые
могут
быть
связаны
с
двумя
алгоритмами
М
.
В
.
Остроградского
для
при
ближения
иррациональных
чисел
,
Успехи Мат. Наук (н.с.) 6 (1951), вып. 5 (45), 33-42.
[17] A. Schinzel, On an analytic problem considered by Sierpiński and Ramanujan, in: New Trends in Probability and Statistics, vol. 2 , Analytie and Probabilistic Methods in Number Theory, VSP Utrecht & TEV Vilnius 1992, 165-171; Selecta, vol. 2, 1217-1223.
[18] A. Schinzel, Historia teorii liczb w Polsce w latach 1851-1950, Wiadom. Mat. 30 (1993), 19-50.
[19] B. M. Stewart, Theory of numbers, New York-London 1964.
[20] G. Stratemeyer, Entwicklung positiver Zahlen nach Strammbruchen (Dissertation), Mitteil. math. Seminars Univ. Gieissen, Bd II, H. 20 (1932), 3-10, 25.
[21] М. И. Стронина,
Целые
точки
на
круговых
конусах
,
Изв. Высш. Учебн. Завед. Математика 1969, вып. 8 (87), 112-116.
[22] A. Walfisz, Teilerprobleme, Math. Z. 26 (1927), 66- 88.
[23] D. Wolke, Primes with preassigned digits, Acta Arith. 119 (2005), 201- 203.
Cité par Sources :