The application history of the elliptic function theory to one mechanical problem
Antiquitates Mathematicae, Tome 17 (2023), pp. 231-248.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

We will consider the emergence of the concept of an elliptic function. The reader will be offered clear conclusions on the formation of the apparatus of the theory of elliptic functions in Abel, Jacobi, Weierstrass, and Somov’s works. Based on the proof of Abel’s theorem, a representation of elliptic functions in terms of theta functions is shown. The paper briefly presents the solution to the classical problem of the rotation of a rigid body about a fixed point using hyperelliptic functions.
DOI : 10.14708/am.v17i1.7147
Classification : 01A60 (01A70, 01A73)
@article{10_14708_am_v17i1_7147,
     author = {Anna Olegovna Yulina},
     title = {The application history of the elliptic function theory to one mechanical problem},
     journal = {Antiquitates Mathematicae},
     pages = { 231--248},
     publisher = {mathdoc},
     volume = {17},
     year = {2023},
     doi = {10.14708/am.v17i1.7147},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/am.v17i1.7147/}
}
TY  - JOUR
AU  - Anna Olegovna Yulina
TI  - The application history of the elliptic function theory to one mechanical problem
JO  - Antiquitates Mathematicae
PY  - 2023
SP  -  231
EP  - 248
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/am.v17i1.7147/
DO  - 10.14708/am.v17i1.7147
LA  - pl
ID  - 10_14708_am_v17i1_7147
ER  - 
%0 Journal Article
%A Anna Olegovna Yulina
%T The application history of the elliptic function theory to one mechanical problem
%J Antiquitates Mathematicae
%D 2023
%P  231-248
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/am.v17i1.7147/
%R 10.14708/am.v17i1.7147
%G pl
%F 10_14708_am_v17i1_7147
Anna Olegovna Yulina. The application history of the elliptic function theory to one mechanical problem. Antiquitates Mathematicae, Tome 17 (2023), pp.  231-248. doi : 10.14708/am.v17i1.7147. http://geodesic.mathdoc.fr/articles/10.14708/am.v17i1.7147/

Cité par Sources :