A note on the history of the Poisson process
Antiquitates Mathematicae, Tome 13 (2019), pp. 3-17.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

This note reviews how the contemporary concept of the Poisson process (sometimes called the Poisson random measure or Poisson point process) evolved through out the time up to recent times. That is from F. Lundberg and W. Feller up to A. Renyi (1967) paper and finally, a construction of Poisson processes by binomial (or Bernoulli) processes, which can be found in J.E. Moyal (1962), J. Mecke (1967) and J.F. Kingman (1967) papers. Also in C. Ryll-Nardzewski (1953) this construction was used in the proof of Theorem for homogeneous Poisson processes.
DOI : 10.14708/am.v13i1.6519
Classification : 60G55 (60D05 60F05 60G57 60H05)
Mots-clés : Poisson process, point process, homogeneous process, counting process
@article{10_14708_am_v13i1_6519,
     author = {Tomasz Rolski},
     title = {A note on the history of the {Poisson} process},
     journal = {Antiquitates Mathematicae},
     pages = { 3--17},
     publisher = {mathdoc},
     volume = {13},
     year = {2019},
     doi = {10.14708/am.v13i1.6519},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/am.v13i1.6519/}
}
TY  - JOUR
AU  - Tomasz Rolski
TI  - A note on the history of the Poisson process
JO  - Antiquitates Mathematicae
PY  - 2019
SP  -  3
EP  - 17
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/am.v13i1.6519/
DO  - 10.14708/am.v13i1.6519
LA  - pl
ID  - 10_14708_am_v13i1_6519
ER  - 
%0 Journal Article
%A Tomasz Rolski
%T A note on the history of the Poisson process
%J Antiquitates Mathematicae
%D 2019
%P  3-17
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/am.v13i1.6519/
%R 10.14708/am.v13i1.6519
%G pl
%F 10_14708_am_v13i1_6519
Tomasz Rolski. A note on the history of the Poisson process. Antiquitates Mathematicae, Tome 13 (2019), pp.  3-17. doi : 10.14708/am.v13i1.6519. http://geodesic.mathdoc.fr/articles/10.14708/am.v13i1.6519/

Cité par Sources :