Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series
@article{10_14708_am_v12i1_6410, author = {Adam Jakubowski}, title = {Life after life. {Remembering} {Tomasz} {Schreiber}}, journal = {Antiquitates Mathematicae}, pages = { 259--269}, publisher = {mathdoc}, volume = {12}, year = {2018}, doi = {10.14708/am.v12i1.6410}, language = {pl}, url = {http://geodesic.mathdoc.fr/articles/10.14708/am.v12i1.6410/} }
Adam Jakubowski. Life after life. Remembering Tomasz Schreiber. Antiquitates Mathematicae, Tome 12 (2018), pp. 259-269. doi : 10.14708/am.v12i1.6410. http://geodesic.mathdoc.fr/articles/10.14708/am.v12i1.6410/
[1] P. Calka, T. Schreiber,
Limit theorems for the typical Poisson–Voronoi cell and the
Crofton cell with a large inradius
, Ann. Probab. 33 (2005), nr 4,1625-1642.
[2] H. Döring, P. Eichelsbacher,
Moderate deviations via cumulants
, J. Theoret. Probab. 26 (2013), nr 2, 360-385.
[3] H.-O. Georgii, T. Schreiber, C. Thäle,
Branching random tessellations with interaction: a thermodynamic view
, Ann. Probab. 43 (2015), nr 4, 1892-1943.
[4] M. N. M. van Lieshout,
Discrete multicolour random mosaics with an application to network extraction
, Scand. J. Stat. 40 (2013), nr 4, 734-751.
[5] J. Karłowska-Pik (ed.),
Tomasz Schreiber (1975–2010)
In Memoriam. The Book of CompleteWorks
, Ed. NCU Toruń 2013.
[6] P. Schreiber,
Gry, których juz nie ma
, accessible at
http://jawnesny.pl/2011/11/gry-ktorych-juz-nie-ma
/
[7] T. Schreiber,
Dobrushin-Kotecký-Shlosman theorem for polygonal Markov fields in the plane
, J. Stat. Phys. 123 (2006), nr 3 ,631-684.
[8] T. Schreiber,
Non-homogeneous polygonal Markov fields in the plane: graphical representations and geometry of higher order correlations
, J. Stat. Phys. 132 (2008),
nr 4, 669-705.
[9] T. Schreiber,
Powstawanie kropli dla wielokątnych pól Markowa
, Wiad. Mat. 44 (2008), 15-22 (in Polish).
[10] T. Schreiber, Limit theorems in stochastic geometry, [in:] New perspectives in
s
tochastic geometry
(W. S. Kendall, I. Molchanov, ed.), Oxford University Press, Oxford 2010, 111-144.
[11] T. Schreiber,
Polygonal web representation for higher order correlation functions of consistent polygonal Markov fields in the plane
, J. Stat. Phys. 140 (2010), nr 4,752–783.
[12] T. Schreiber, N. Soja,
Limit theory for planar Gilbert tessellations
, Probab. Math. Statist. 31 (2011), nr 1, 149-160.
[13] T. Schreiber, C. Thäle,
Second-order properties and central limit theory for the vertex process of iteration infinitely divisible and iteration stable random tessellations in the plane
, Adv. in Appl. Probab. 42 (2010), nr 4, 913–935.
[14] T. Schreiber, J. E. Yukich,
Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points
,
Ann. Probab. 36, (2008) nr 1, 363-396.
Cité par Sources :