Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series
@article{10_14708_am_v11i0_5124, author = {Egor Mikhailovich Bogatov}, title = {Key moments of the mutual influence of the {Polish} and {Soviet} schools of nonlinear functional analysis in the 1920s--1950s}, journal = {Antiquitates Mathematicae}, pages = { 131 -- 156}, publisher = {mathdoc}, volume = {11}, year = {2017}, doi = {10.14708/am.v11i0.5124}, language = {pl}, url = {http://geodesic.mathdoc.fr/articles/10.14708/am.v11i0.5124/} }
TY - JOUR AU - Egor Mikhailovich Bogatov TI - Key moments of the mutual influence of the Polish and Soviet schools of nonlinear functional analysis in the 1920s--1950s JO - Antiquitates Mathematicae PY - 2017 SP - 131 EP - 156 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14708/am.v11i0.5124/ DO - 10.14708/am.v11i0.5124 LA - pl ID - 10_14708_am_v11i0_5124 ER -
%0 Journal Article %A Egor Mikhailovich Bogatov %T Key moments of the mutual influence of the Polish and Soviet schools of nonlinear functional analysis in the 1920s--1950s %J Antiquitates Mathematicae %D 2017 %P 131 - 156 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.14708/am.v11i0.5124/ %R 10.14708/am.v11i0.5124 %G pl %F 10_14708_am_v11i0_5124
Egor Mikhailovich Bogatov. Key moments of the mutual influence of the Polish and Soviet schools of nonlinear functional analysis in the 1920s--1950s. Antiquitates Mathematicae, Tome 11 (2017), pp. 131 - 156. doi : 10.14708/am.v11i0.5124. http://geodesic.mathdoc.fr/articles/10.14708/am.v11i0.5124/
%
\bibitem{Banach} Banach S., (1922). Sur les op\'erations dans les ensembles abstraits et leur application aux \'equations integrals, \textit{Fund. Math.}, \textbf{3}, 133--181. \JFM{48.0279.03}
%
\bibitem{1931_Ban} Banach S., (1931). Theorja operacyj. Tom I: Operacje liniowe, Kasa im. Mianowskiego, Warszawa.
%
\bibitem{1932_Ban} Banach S., (1932) Th\'{e}orie des op\'erations lin\'{e}aires. Monografje Matematyczne, Vol. I, Warszawa. \ZBL{0005.20901}
%
\bibitem{BirKel} Birkhoff G.D. \& Kellogg O.D., (1922) Invariant points in function space, \textit{Trans. Amer. Math. Soc.}, \textbf{23}, 95--115. \MR{1501192} \JFM{48.0472.02}
%
\bibitem{2015_Bog} Bogatov E.M., (2015). \href{http://tvim.cfuv.ru/wp-content/uploads/2016/12/bogatov.pdf}{Some notes on the history of Orlicz spaces}, \textit{Taurida J. of Comput. Sc. Th. and Math.}, \textbf{3}, 24--39 (in Russian) \eLIBru{26153984}.
%
\bibitem{2015_BogMuh} Bogatov E.M., Mukhin R.R., (2015) On the relationship between nonlinear analysis, bifurcations and nonlinear dynamics: on the example of the Voronezh school of nonlinear functional analysis, \textit{Izv. VUZ. Applied Nonlinear Dynamics}, \textbf{23} (6), 74--88 (in Russian) \eLIBru{26088366}.
%
\bibitem{2016_BogMuh} Bogatov E.M., Mukhin R.R. (2016). About the history of nonlinear integral equations, \textit{Izv. VUZ. Applied Nonlinear Dynamics}, \textbf{24} (2), 77--114 (in Russian) \eLIBru{26561201}.
%
\bibitem{2017_Bog} Bogatov E.M., (2017). About the history of development of nonlinear integral equations in the USSR. Strong nonlinearities, \textit{Belgorod State University Sci. Bull. Math. Phys.}, \textbf{45}, 93--106 (in Russian) \eLIBru{28948512}.
%
\bibitem{1931_Bor} Borsuk K., (1931). Sur les r\'etractes, \textit{Fund. Math.}, \textbf{17.1}, 152--170 \ZBL{0003.02701}.
%
\bibitem{1933_Bor} Borsuk K., (1933). Drei S\"atze \"Uber die n-dimensionale euklidische Sph\"are, \textit{Fund. Math.}, \textbf{20.1}, 177--190 \ZBL{0006.42403}.
%
\bibitem{1957_Bor} Borsuk K., (1957). Sur l'\'elimination de ph\'enom\`enes paradoxaux en topologie g\'en\'erale. Proceedings ICM 1954. Vol. I, Groningen North-Holland Publishing Co., Amsterdam, 197--208 \MR{0097050} \ZBL{0080.15604}.
%
\bibitem{1911_Brou} Brouwer L. E. J., (1911). Beweis der Invarianz der Dimensionenzahl, \textit{Math. Ann.} \textbf{70}, 161--165 \MR{1511615} ) \JFM{42.0416.02}
%
\bibitem{1912_Brou} Brouwer L. E. J., (1912). \"Uber Abbildung von Mannigfaltigkeiten, \textit{Math. Ann.}, \textbf{71}, 97--115 \MR{1511678} \JFM{42.0417.01}
%
\bibitem{Burk} Burkill J.C., (1928). Strong and weak convergence of functions of general type, \textit{Proc. Lond. Math. Soc.} \textbf{2}: 28, 493--500 \MR{1575868} \JFM{54.0281.01}
%
\bibitem{Boss} Boss V., (2014). Lekcii po matematike: Topologiya. T.13, Izd. 3-e, LENAND, Moscow (in Russian).
%
\bibitem{Cacci} Caccioppoli R., (1930). Un teorema generale sull'esistenza di elementi uniti in una trasformazione funzionale, \textit{Rend. Accad. Lincei.}, \textbf{11}, 794--799. \JFM{56.0359.01}
%
\bibitem{Cauty} Cauty R., (2005). R\'etractes absolus de voisinage alg\'ebriques, \textit{Serdica Math. J.}, \textbf{31}(4), 309--354. \MR{2219466} \ZBLl{1164.54340}
%
\bibitem{Dem} Demidovich V.B., (2013). K istorii mehmata MGU, Izd. popechitelskogo soveta meh.-matem. fakulteta MGU, Moscow (in Russian).
%
\bibitem{DenMigPapa} Denkowski Z., Mig\'orski S., Papageorgiou N. S., (2003). An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston. xvi+689 pp. ISBN: 0-306-47392-5
\MR{2024162} ) \ZBL{1040.46001}
%
\bibitem{Died} Dieudonn\'e J., (1989). A history of algebraic and differential topology, 1900-1960, Modern Birkh\"auser, Boston.xxii+648 pp. ISBN: 0-8176-3388-X
\MR{0995842} \ZBL{1180.55001}
%
\bibitem{Duda} Duda R., (2014). Pearls from a Lost City: The Lvov School of Mathematics Translated by Daniel Davies. Providence, R.I.: American Math. Society. xii+231 pp. ISBN: 978-1-4704-1076-6 \MR{3222779} \ZBL{1303.01001}
%
\bibitem{Granas} Granas A., (1981). KKM-Maps and their applications to nonlinear problems / The Scottish Book: Mathematics from the Scottish Cafe. R. Daniel Mauldin (Ed.), Birkh\"auser, Boston , 45--62. xiii+268 pp. (2 plates). ISBN: 3-7643-3045-7 \MR{0666400}
%
\bibitem{GraDu} Granas A., Dugundji J., (2003). Fixed point theory. Springer Monographs in Mathematics. New York, NY: Springer. xvi+690 pp. ISBN: 0-387-00173-5
\MR{1987179} \ZBL{1025.47002}
%
\bibitem{Hopf} Hopf H., (1926). Abbildungsklassen \textit{n}-dimensionalen Mannigfaltigkeiten, \textit{Math. Ann.}, \textbf{96}, 209--224. \MR{1512315} \JFM{52.0569.06}
%
\bibitem{UMN_Kant} Kantorovich L. V., (1987). My path in science (a paper intended for the Moscow Mathematical Society). (Russian) \textit{Uspekhi Mat. Nauk}, \textbf{42:2}(254), 183--213. \MR{0898626} \ZBL{0626.01029}
%
\bibitem{1931_Kolm} Kolmogoroff A., (1931) \"Uber Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel, \textit{G\"ottinger Nachr.}, \textbf{9}, 60--63. ) \ZBL{0002.38501}
%
\bibitem{Kolm} Kolmogoroff A., (1934) Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes, \textit{Studia Math.}, \textbf{5.1}, 29--33. ) \ZBL{0010.18202}
%
\bibitem{KoToep} K\"othe G., Toeplitz O. (1934). Lineare R\"aume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, \textit{J. Reine Angew. Math.}, \textbf{171}, 193--226. \MR{1581429} \ZBL{0009.25704}
%
\bibitem{Kothe} K\"othe G., (1987). Stanislaw Mazur's contributions to functional analysis, \textit{Math. Ann.}, \textbf{277}, 489--528.
\MR{0891589} \ZBL{0625.01014}
%
\bibitem{1954_Krasn} Krasnosel'skii M. A., (1954). Some problems of nonlinear analysis , \textit{Uspekhi Mat. Nauk}, \textbf{9}:3 (61), 57--114.
\MR{0075565} ) \ZBL{0056.11401}
%
\bibitem{1955_Krasn} Krasnosel'skii M. A., (1955). Two remarks on the method of successive approximations, \textit{Uspekhi Mat. Nauk}, \textbf{10}:1(63), 123--127. \MR{0068119} ) \ZBL{0064.12002}
%
\bibitem{1956_Krasn} Krasnosel'skii M.A., (1956). Topologicheskie metody v teorii integral'nyh uravnenii, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (in Russian). 392 pp.
\MR{0096983} ) \ZBL{0070.33001}
%
\bibitem{1956_KrasRut} Krasnosel'skii M.A. \& Rutickii Ya. B., (1956). The general theory of Orlicz spaces, \textit{Proceedings of the Seminar on functional analysis}, Voronezh State University, {\bf 1}, 1--38 (in Russian).
\MR{0084737} ) \ZBL{0074.09307}
%
\bibitem{1958_KrasRut} Krasnosel'skii M.A. \& Rutickii Ya. B., (1958). Vypuklye funkcii i prostranstva Orlicza, Gosudarstv. Izdat. Fiz.-Mat. Lit., 271 pp. , Moscow (in Russian). \MR{0106412} \ZBL{0084.10104}
%
\bibitem{KrasRut61} Krasnosel'skii M.A. \& Rutickii Ya. B., (1961). Convex Functions and Orlicz Spaces, Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen 1961 xi+249 pp.
\MR{0126722} \ZBL{0095.09103}
%
\bibitem{1970_Krasn} Krasnosel'skii M.A., (1970). Functional analysis. Equtions with nonlinear operators. In the book: History of domestic mathematics. Ed. Shtokalo I.Z. Vol.4. Part I., Naukova dumka, Kiev, 752--761 (in Russian).
%
\bibitem{KreShmu} Krein M. G. and \v{S}mulian V. L., (1940). On regularly convex sets in the space conjugate to a Banach space, \textit{Annals of Math.}, \textbf{41}, 556--583. )
\MR{0002009} \ZBL{0024.41305}
%
\bibitem{KreinLyus} Krein M. G., Lyusternik L.A., (1948). Functional analysis. In coll. Mathematics in the USSR for 30 years. (1917-1947), Gostekhizdat, Moscow-Leningrad, 608--673. ) \ZBL{0039.11603}
%
\bibitem{KreinRut} Krein M. G., Rutman M. A., (1948). Linear operators leaving invariant a cone in a Banach space, \textit{Uspekhi Mat. Nauk}, \textbf{3:1}(23), 3--95.
\MR{0027128} \ZBL{0030.12902}
%
\bibitem{Krein} Krein M. G., (1965). Vitol'd L'vovich Shmul'yan (on the fiftieth anniversary of his birth and the twentieth anniversary of his death), \textit{Russian Math. Surveys}, \textbf{20} (2), 127--129; translation from Usp. Mat. Nauk 20, No. 2(122), 131-133 (1965).
\MR{0184835} \ZBL{0127.00607}
%
\bibitem{Kura} Kuratowski K., (1980). A Half Century of Polish Mathematics: Remembrances and Reflections, Translated from the Polish by Andrzej Kirkor. With a preface by S. Ulam. International Series in Pure and Applied Mathematics, 108. Pergamon Press, Inc., Elmsford, N.Y.; PWN—Polish Scientific Publishers, Warsaw, 1980. viii+200 pp. ISBN: 0-08-023046-6
\MR{0565253} \ZBL{0438.01006}
%
\bibitem{Lavr} Lavrent'ev M. A. (1974), Nikolai Nikolaevich Luzin, \textit{Russian Math. Surveys}, \textbf{29}:5 , 173--178. \MR{0386959}
%
\bibitem{LerSchaud} Leray J., Schauder J., (1934). Topologie et \'{e}quations fonctionnelles, \textit{Ann. Sci. \'Ecole Norm. Sup.} \textbf{61}, 45--73. ) \MR{1509338} \ZBL{0009.07301}
%
\bibitem{LerSchaud2} Leray J., Schauder J., (1946). Topology and functional equations, \textit{Uspekhi Mat. Nauk}, \textbf{1}:3-4(13-14), 71--95 (in Russian). ) \ZBL{0060.27704}
%
\bibitem{Losin} Lozinski S., (1944). On convergence and summability of Fourier series and interpolation processes, \textit{Rec. Math.} \textit{[Mat. Sbornik] N.S.}, \textbf{14(56)}:3, 175--268.
\MR{0012144} \ZBL{0060.18301}
%
\bibitem{LyuShni} Lyusternik L.A., Shnirel'man L.G. (1930). Topologicheskie metody v variazionnyh zadachah, Issled. in-t matem. i meh. pri 1 MGU, Moscow (in Russian). ) \JFM{56.1134.02}
%
\bibitem{MaliWnu} Maligranda L., Wnuk W. (2000). W\l adys\l aw Orlicz (1903-1990), \textit{Rocz. Pol. Tow. Mat., Ser. II, Wiadom. Mat.}, \textbf{36}, 85--147.
\MR{1817358} \ZBL{1242.01057}
%
\bibitem{Matem15} Matematika: nauka v SSSR za pyatnadtsat' let (1917-1932), GTTI, Moscow-Leningrad, 1932 (in Russian).
%
\bibitem{http} Mathematics Genealogy Project. Andrzej Granas [Online] Available from URL: https://www.genealogy.math.ndsu.nodak.edu/id.php?id=29674.
%
\bibitem{Mato} Matou\v{s}ek J., (2008).
Using the Borsuk-Ulam theorem. Lectures on topological methods in combinatorics and geometry. Written in cooperation with Anders Bj\"orner and G\"unter M. Ziegler. 2nd corrected printing. (English)
Universitext. Berlin: Springer (ISBN 978-3-540-00362-5/pbk; 978-3-540-76649-0/ebook). xii, 214 p.
\MR{1988723} \ZBL{1234.05002}
%
\bibitem{1999_Maw} Mawhin J., (1999) Leray-Schauder Degree: A half century of extension and applications, \textit{Topological Methods in Nonlinear Analysis}, \textbf{14}, 195--228 \doi{10.12775/TMNA.1999.029} \MR{1766190} \ZBL{0957.47045}.
%
\bibitem{2000_Maw} Mawhin J., (2000). Poincare's early use of Analysis situs in nonlinear differential equations: Variations around the theme of Kronecker's integral, \textit{Philosophia Scientiae}, \textbf{4}, 103--143.
%
\bibitem{2007_Maw} Mawhin J., (2007). Jean Leray and nonlinear integral equations: A partially forgotten legacy, \textit{Journal of Fixed Point Theory and Applications}, \textbf{1}(2), 159--187. )
\MR{2336608} \ZBL{1147.45001}
%
\bibitem{1930_Maz} Mazur S., (1930). \"Uber die kleinste konvexe Menge, die eine gegebene kompakte Menge enth\"alt, \textit{Studia Math.}, \textbf{2.1}, 7--9. \JFM{56.0091.01}
%
\bibitem{1933_Maz} Mazur S., (1933). \"Uber konvexe Mengen in linearen normierten R\"aumen, \textit{Studia Math.}, \textbf{4}, 70--84. \JFM{59.1074.01}
%
\bibitem{Mink} Minkowski H., (1911). Theorie der konvexen K\"orper, insbesondere Begr\"undung Ihres oberflachen, \textit{Bgriffs, Ges. Abhandl.}, \textbf{2}, Leipzig-Berlin, 131--229.
%
\bibitem{Morr} Morrison T. J., (2001). Functional Analysis. An Introduction to Banach Space Theory,
Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2001. xiv+359 pp. ISBN: 0-471-37214-5 \MR{1885114} \ZBL{1005.46004}
%
\bibitem{1934_Nem} Niemytzki V.,(1934). Th\'eor\`emes d'existence et d'unicit\'e des solutions de quelques \'equations int\'egrales non-lin\'eaires, \textit{Mat. Sb.}, \textbf{41}(3), 421--452. \ZBL{0011.02603}
%
\bibitem{1936_Nem} Nemytskii V. V., (1936). The fixed-point method in analysis, \textit{Uspekhi Mat. Nauk}, \textbf{1}, 141--174. ) \ZBL{0016.21404}
%
\bibitem{1932_Orlicz} Orlicz W., (1932). \"{U}ber eine gewisse Klasse von Raumen vom Typus B, \textit{Bull. Int. Acad. Polon. Sci. Ser. A}, 207--220. ) \ZBL{0006.31503}
%
\bibitem{1936_Orlicz} Orlicz W., (1936). \"{U}ber Raume $(L_M)$, \textit{Bull. Int. Acad. Polon. Sci., Ser. A}, 93--107. ) \ZBL{0014.16302}
%
\bibitem{Park} Park Sehie, (1999) Ninety years of the Brouwer fixed point theorem, \textit{Vietnam J. Math.}, \textbf{27}(3), 187--222. \MR{1811334} ) \ZBL{0938.54039}
%
\bibitem{Piet} Pietsch A., (2007) History of Banach Spaces and Linear Operators, )
Basel: Birkhäuser (ISBN 978-0-8176-4367-6/hbk; 978-0-8176-4596-0/ebook). xxiii, 855 p.
\MR{2300779} \ZBL{1121.46002}
%
\bibitem{Przen} Przenios\l o M., (2014) Kontakty naukowe polskich i rosyjskich matematyk\'{o}w w dwudziestoleciu mi\c{e}dzywojennym, \textit{Studia z Dziej\'{o}w Rosji i Europy \'{S}rodkowo-Wschodniej}, \textbf{XLIX}:1, 115--129.
%
\bibitem{RaoRen} Rao M.M., Ren Zhong Dao, (2002). Applications of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics, 250. Marcel Dekker, Inc., New York, xii+464 pp. ISBN: 0-8247-0730-3
\MR{1890178} \ZBL{0997.46027}
%
\bibitem{1927_Schaud} Schauder J., (1927). Zur Theorie stetiger Abbildungen in Funktionalr\"{a}umen, \textit{Math. Zeitschr.}, \textbf{26}(1), 47--65. )
\MR{1544841} \JFM{53.0374.01}
%
\bibitem{1930_Schaud} Schauder J., (1930). Der Fixpunktsatz in Funktionalr\"{a}umen, \textit{Studia Math.}, \textbf{2}, 171--180. \JFM{56.0355.01}
%
\bibitem{1932_Schaud} Schauder J., (1932). \"Uber den Zusammenhang zwischen der Eindeutigkeit und L\"osbarkeit partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, \textit{Math. Ann.}, \textbf{106} (1), 661--721. ) \ZBL{0004.35001}
%
\bibitem{Sieg} Siegberg H., ( 1981). Some historical remarks concerning degree theory, \textit{Amer. Math. Monthly} \textbf{88}(2), 125--139.
\MR{0606251} \ZBL{0463.55002}
%
\bibitem{Stewart} Stewart H.B., (1991). Application of fixed point theory to chaotic attractors of forced oscillators, \textit{Japan J. Indust. Appl. Math.} \textbf{8}, 487--506.
\MR{1137653} \ZBL{0743.58025}
%
\bibitem{Tikh} Tychonoff A., (1935). Ein Fixpunktsatz, \textit{Math. Annal.}, \textbf{111}, 767--776. )
\MR{1513031} \ZBL{0012.30803}
%
\bibitem{Urys} Urysohn P., (1924). Les classes (D) s\'eparables et l'espace hilbertein,\textit{ C.R.}, \textbf{178}, 65--67. ) \JFM{50.0133.01}
%
\bibitem{1927_Urys} Urysohn P., (1927) Sur un espace m\'{e}trique universel, I. II. Bulletin sc. Math. (2) 51, 43-64; 51, 74-90 . \JFM{53.0556.01}
%
\bibitem{Zaan} Zaanen A.C., (1946). On a certain class of Banach spaces, \textit{Ann. of Math.}, (2) \textbf{4} (47), 654--666.
\MR{0017468} \ZBL{0060.27505}
%
\bibitem{Zied} Zeidler E., (1986).
Nonlinear functional analysis and its applications. I: Fixed-point theorems. Transl. from the German by Peter R. Wadsack. (English) Springer-Verlag, New York, 1986. xxi+897 pp. ISBN: 0-387-90914-1
\MR{0816732} \ZBL{0583.47050}
Cité par Sources :