Key moments of the mutual influence of the Polish and Soviet schools of nonlinear functional analysis in the 1920s--1950s
Antiquitates Mathematicae, Tome 11 (2017), pp. 131 - 156.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

The paper includes key aspects of the history of development of qualitative methods of non-linear functional analysis (fixed point theorems, theory of mapping degree, theory of Orlicz spaces), within the framework of which Polish-Soviet interaction was most clearly manifested. In the period up to the mid-twentieth century these areas were advanced by the representatives of Lvov Mathematical School, Warsaw Mathematical School, Moscow Mathematical School and Odessa Mathematical School. Examination of their results is a significant part of this work. Much attention is paid to the investigations of the Soviet mathematician M.A. Krasnosel'skii, who used the achievements of J. Schauder and K. Borsuk as well as Orlicz spaces for solving a wide class of problems in qualitative theory of nonlinear integral equations.
DOI : 10.14708/am.v11i0.5124
Classification : 01A60, 01A72, 46-03
Mots-clés : Polish school of functional analysis, Soviet school of functional analysis, fixed point theorem, Orlicz space, nonlinear integral equations, mapping degree, convex sets, retracts theory
@article{10_14708_am_v11i0_5124,
     author = {Egor Mikhailovich Bogatov},
     title = {Key moments of the mutual influence of the {Polish} and {Soviet} schools of nonlinear functional analysis in the 1920s--1950s},
     journal = {Antiquitates Mathematicae},
     pages = { 131 -- 156},
     publisher = {mathdoc},
     volume = {11},
     year = {2017},
     doi = {10.14708/am.v11i0.5124},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/am.v11i0.5124/}
}
TY  - JOUR
AU  - Egor Mikhailovich Bogatov
TI  - Key moments of the mutual influence of the Polish and Soviet schools of nonlinear functional analysis in the 1920s--1950s
JO  - Antiquitates Mathematicae
PY  - 2017
SP  -  131 
EP  -  156
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/am.v11i0.5124/
DO  - 10.14708/am.v11i0.5124
LA  - pl
ID  - 10_14708_am_v11i0_5124
ER  - 
%0 Journal Article
%A Egor Mikhailovich Bogatov
%T Key moments of the mutual influence of the Polish and Soviet schools of nonlinear functional analysis in the 1920s--1950s
%J Antiquitates Mathematicae
%D 2017
%P  131 - 156
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/am.v11i0.5124/
%R 10.14708/am.v11i0.5124
%G pl
%F 10_14708_am_v11i0_5124
Egor Mikhailovich Bogatov. Key moments of the mutual influence of the Polish and Soviet schools of nonlinear functional analysis in the 1920s--1950s. Antiquitates Mathematicae, Tome 11 (2017), pp.  131 - 156. doi : 10.14708/am.v11i0.5124. http://geodesic.mathdoc.fr/articles/10.14708/am.v11i0.5124/

%

\bibitem{Banach} Banach S., (1922). Sur les op\'erations dans les ensembles abstraits et leur application aux \'equations integrals, \textit{Fund. Math.}, \textbf{3}, 133--181. \JFM{48.0279.03}

%

\bibitem{1931_Ban} Banach S., (1931). Theorja operacyj. Tom I: Operacje liniowe, Kasa im. Mianowskiego, Warszawa.

%

\bibitem{1932_Ban} Banach S., (1932) Th\'{e}orie des op\'erations lin\'{e}aires. Monografje Matematyczne, Vol. I, Warszawa. \ZBL{0005.20901}

%

\bibitem{BirKel} Birkhoff G.D. \& Kellogg O.D., (1922) Invariant points in function space, \textit{Trans. Amer. Math. Soc.}, \textbf{23}, 95--115. \MR{1501192} \JFM{48.0472.02}

%

\bibitem{2015_Bog} Bogatov E.M., (2015). \href{http://tvim.cfuv.ru/wp-content/uploads/2016/12/bogatov.pdf}{Some notes on the history of Orlicz spaces}, \textit{Taurida J. of Comput. Sc. Th. and Math.}, \textbf{3}, 24--39 (in Russian) \eLIBru{26153984}.

%

\bibitem{2015_BogMuh} Bogatov E.M., Mukhin R.R., (2015) On the relationship between nonlinear analysis, bifurcations and nonlinear dynamics: on the example of the Voronezh school of nonlinear functional analysis, \textit{Izv. VUZ. Applied Nonlinear Dynamics}, \textbf{23} (6), 74--88 (in Russian) \eLIBru{26088366}.

%

\bibitem{2016_BogMuh} Bogatov E.M., Mukhin R.R. (2016). About the history of nonlinear integral equations, \textit{Izv. VUZ. Applied Nonlinear Dynamics}, \textbf{24} (2), 77--114 (in Russian) \eLIBru{26561201}.

%

\bibitem{2017_Bog} Bogatov E.M., (2017). About the history of development of nonlinear integral equations in the USSR. Strong nonlinearities, \textit{Belgorod State University Sci. Bull. Math. Phys.}, \textbf{45}, 93--106 (in Russian) \eLIBru{28948512}.

%

\bibitem{1931_Bor} Borsuk K., (1931). Sur les r\'etractes, \textit{Fund. Math.}, \textbf{17.1}, 152--170 \ZBL{0003.02701}.

%

\bibitem{1933_Bor} Borsuk K., (1933). Drei S\"atze \"Uber die n-dimensionale euklidische Sph\"are, \textit{Fund. Math.}, \textbf{20.1}, 177--190 \ZBL{0006.42403}.

%

\bibitem{1957_Bor} Borsuk K., (1957). Sur l'\'elimination de ph\'enom\`enes paradoxaux en topologie g\'en\'erale. Proceedings ICM 1954. Vol. I, Groningen North-Holland Publishing Co., Amsterdam, 197--208 \MR{0097050} \ZBL{0080.15604}.

%

\bibitem{1911_Brou} Brouwer L. E. J., (1911). Beweis der Invarianz der Dimensionenzahl, \textit{Math. Ann.} \textbf{70}, 161--165 \MR{1511615} ) \JFM{42.0416.02}

%

\bibitem{1912_Brou} Brouwer L. E. J., (1912). \"Uber Abbildung von Mannigfaltigkeiten, \textit{Math. Ann.}, \textbf{71}, 97--115 \MR{1511678} \JFM{42.0417.01}

%

\bibitem{Burk} Burkill J.C., (1928). Strong and weak convergence of functions of general type, \textit{Proc. Lond. Math. Soc.} \textbf{2}: 28, 493--500 \MR{1575868} \JFM{54.0281.01}

%

\bibitem{Boss} Boss V., (2014). Lekcii po matematike: Topologiya. T.13, Izd. 3-e, LENAND, Moscow (in Russian).

%

\bibitem{Cacci} Caccioppoli R., (1930). Un teorema generale sull'esistenza di elementi uniti in una trasformazione funzionale, \textit{Rend. Accad. Lincei.}, \textbf{11}, 794--799. \JFM{56.0359.01}

%

\bibitem{Cauty} Cauty R., (2005). R\'etractes absolus de voisinage alg\'ebriques, \textit{Serdica Math. J.}, \textbf{31}(4), 309--354. \MR{2219466} \ZBLl{1164.54340}

%

\bibitem{Dem} Demidovich V.B., (2013). K istorii mehmata MGU, Izd. popechitelskogo soveta meh.-matem. fakulteta MGU, Moscow (in Russian).

%

\bibitem{DenMigPapa} Denkowski Z., Mig\'orski S., Papageorgiou N. S., (2003). An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston. xvi+689 pp. ISBN: 0-306-47392-5

\MR{2024162} ) \ZBL{1040.46001}

%

\bibitem{Died} Dieudonn\'e J., (1989). A history of algebraic and differential topology, 1900-1960, Modern Birkh\"auser, Boston.xxii+648 pp. ISBN: 0-8176-3388-X

\MR{0995842} \ZBL{1180.55001}

%

\bibitem{Duda} Duda R., (2014). Pearls from a Lost City: The Lvov School of Mathematics Translated by Daniel Davies. Providence, R.I.: American Math. Society. xii+231 pp. ISBN: 978-1-4704-1076-6 \MR{3222779} \ZBL{1303.01001}

%

\bibitem{Granas} Granas A., (1981). KKM-Maps and their applications to nonlinear problems / The Scottish Book: Mathematics from the Scottish Cafe. R. Daniel Mauldin (Ed.), Birkh\"auser, Boston , 45--62. xiii+268 pp. (2 plates). ISBN: 3-7643-3045-7 \MR{0666400}

%

\bibitem{GraDu} Granas A., Dugundji J., (2003). Fixed point theory. Springer Monographs in Mathematics. New York, NY: Springer. xvi+690 pp. ISBN: 0-387-00173-5

\MR{1987179} \ZBL{1025.47002}

%

\bibitem{Hopf} Hopf H., (1926). Abbildungsklassen \textit{n}-dimensionalen Mannigfaltigkeiten, \textit{Math. Ann.}, \textbf{96}, 209--224. \MR{1512315} \JFM{52.0569.06}

%

\bibitem{UMN_Kant} Kantorovich L. V., (1987). My path in science (a paper intended for the Moscow Mathematical Society). (Russian) \textit{Uspekhi Mat. Nauk}, \textbf{42:2}(254), 183--213. \MR{0898626} \ZBL{0626.01029}

%

\bibitem{1931_Kolm} Kolmogoroff A., (1931) \"Uber Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel, \textit{G\"ottinger Nachr.}, \textbf{9}, 60--63. ) \ZBL{0002.38501}

%

\bibitem{Kolm} Kolmogoroff A., (1934) Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes, \textit{Studia Math.}, \textbf{5.1}, 29--33. ) \ZBL{0010.18202}

%

\bibitem{KoToep} K\"othe G., Toeplitz O. (1934). Lineare R\"aume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, \textit{J. Reine Angew. Math.}, \textbf{171}, 193--226. \MR{1581429} \ZBL{0009.25704}

%

\bibitem{Kothe} K\"othe G., (1987). Stanislaw Mazur's contributions to functional analysis, \textit{Math. Ann.}, \textbf{277}, 489--528.

\MR{0891589} \ZBL{0625.01014}

%

\bibitem{1954_Krasn} Krasnosel'skii M. A., (1954). Some problems of nonlinear analysis , \textit{Uspekhi Mat. Nauk}, \textbf{9}:3 (61), 57--114.

\MR{0075565} ) \ZBL{0056.11401}

%

\bibitem{1955_Krasn} Krasnosel'skii M. A., (1955). Two remarks on the method of successive approximations, \textit{Uspekhi Mat. Nauk}, \textbf{10}:1(63), 123--127. \MR{0068119} ) \ZBL{0064.12002}

%

\bibitem{1956_Krasn} Krasnosel'skii M.A., (1956). Topologicheskie metody v teorii integral'nyh uravnenii, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (in Russian). 392 pp.

\MR{0096983} ) \ZBL{0070.33001}

%

\bibitem{1956_KrasRut} Krasnosel'skii M.A. \& Rutickii Ya. B., (1956). The general theory of Orlicz spaces, \textit{Proceedings of the Seminar on functional analysis}, Voronezh State University, {\bf 1}, 1--38 (in Russian).

\MR{0084737} ) \ZBL{0074.09307}

%

\bibitem{1958_KrasRut} Krasnosel'skii M.A. \& Rutickii Ya. B., (1958). Vypuklye funkcii i prostranstva Orlicza, Gosudarstv. Izdat. Fiz.-Mat. Lit., 271 pp. , Moscow (in Russian). \MR{0106412} \ZBL{0084.10104}

%

\bibitem{KrasRut61} Krasnosel'skii M.A. \& Rutickii Ya. B., (1961). Convex Functions and Orlicz Spaces, Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen 1961 xi+249 pp.

\MR{0126722} \ZBL{0095.09103}

%

\bibitem{1970_Krasn} Krasnosel'skii M.A., (1970). Functional analysis. Equtions with nonlinear operators. In the book: History of domestic mathematics. Ed. Shtokalo I.Z. Vol.4. Part I., Naukova dumka, Kiev, 752--761 (in Russian).

%

\bibitem{KreShmu} Krein M. G. and \v{S}mulian V. L., (1940). On regularly convex sets in the space conjugate to a Banach space, \textit{Annals of Math.}, \textbf{41}, 556--583. )

\MR{0002009} \ZBL{0024.41305}

%

\bibitem{KreinLyus} Krein M. G., Lyusternik L.A., (1948). Functional analysis. In coll. Mathematics in the USSR for 30 years. (1917-1947), Gostekhizdat, Moscow-Leningrad, 608--673. ) \ZBL{0039.11603}

%

\bibitem{KreinRut} Krein M. G., Rutman M. A., (1948). Linear operators leaving invariant a cone in a Banach space, \textit{Uspekhi Mat. Nauk}, \textbf{3:1}(23), 3--95.

\MR{0027128} \ZBL{0030.12902}

%

\bibitem{Krein} Krein M. G., (1965). Vitol'd L'vovich Shmul'yan (on the fiftieth anniversary of his birth and the twentieth anniversary of his death), \textit{Russian Math. Surveys}, \textbf{20} (2), 127--129; translation from Usp. Mat. Nauk 20, No. 2(122), 131-133 (1965).

\MR{0184835} \ZBL{0127.00607}

%

\bibitem{Kura} Kuratowski K., (1980). A Half Century of Polish Mathematics: Remembrances and Reflections, Translated from the Polish by Andrzej Kirkor. With a preface by S. Ulam. International Series in Pure and Applied Mathematics, 108. Pergamon Press, Inc., Elmsford, N.Y.; PWN—Polish Scientific Publishers, Warsaw, 1980. viii+200 pp. ISBN: 0-08-023046-6

\MR{0565253} \ZBL{0438.01006}

%

\bibitem{Lavr} Lavrent'ev M. A. (1974), Nikolai Nikolaevich Luzin, \textit{Russian Math. Surveys}, \textbf{29}:5 , 173--178. \MR{0386959}

%

\bibitem{LerSchaud} Leray J., Schauder J., (1934). Topologie et \'{e}quations fonctionnelles, \textit{Ann. Sci. \'Ecole Norm. Sup.} \textbf{61}, 45--73. ) \MR{1509338} \ZBL{0009.07301}

%

\bibitem{LerSchaud2} Leray J., Schauder J., (1946). Topology and functional equations, \textit{Uspekhi Mat. Nauk}, \textbf{1}:3-4(13-14), 71--95 (in Russian). ) \ZBL{0060.27704}

%

\bibitem{Losin} Lozinski S., (1944). On convergence and summability of Fourier series and interpolation processes, \textit{Rec. Math.} \textit{[Mat. Sbornik] N.S.}, \textbf{14(56)}:3, 175--268.

\MR{0012144} \ZBL{0060.18301}

%

\bibitem{LyuShni} Lyusternik L.A., Shnirel'man L.G. (1930). Topologicheskie metody v variazionnyh zadachah, Issled. in-t matem. i meh. pri 1 MGU, Moscow (in Russian). ) \JFM{56.1134.02}

%

\bibitem{MaliWnu} Maligranda L., Wnuk W. (2000). W\l adys\l aw Orlicz (1903-1990), \textit{Rocz. Pol. Tow. Mat., Ser. II, Wiadom. Mat.}, \textbf{36}, 85--147.

\MR{1817358} \ZBL{1242.01057}

%

\bibitem{Matem15} Matematika: nauka v SSSR za pyatnadtsat' let (1917-1932), GTTI, Moscow-Leningrad, 1932 (in Russian).

%

\bibitem{http} Mathematics Genealogy Project. Andrzej Granas [Online] Available from URL: https://www.genealogy.math.ndsu.nodak.edu/id.php?id=29674.

%

\bibitem{Mato} Matou\v{s}ek J., (2008).

Using the Borsuk-Ulam theorem. Lectures on topological methods in combinatorics and geometry. Written in cooperation with Anders Bj\"orner and G\"unter M. Ziegler. 2nd corrected printing. (English)

Universitext. Berlin: Springer (ISBN 978-3-540-00362-5/pbk; 978-3-540-76649-0/ebook). xii, 214 p.

\MR{1988723} \ZBL{1234.05002}

%

\bibitem{1999_Maw} Mawhin J., (1999) Leray-Schauder Degree: A half century of extension and applications, \textit{Topological Methods in Nonlinear Analysis}, \textbf{14}, 195--228 \doi{10.12775/TMNA.1999.029} \MR{1766190} \ZBL{0957.47045}.

%

\bibitem{2000_Maw} Mawhin J., (2000). Poincare's early use of Analysis situs in nonlinear differential equations: Variations around the theme of Kronecker's integral, \textit{Philosophia Scientiae}, \textbf{4}, 103--143.

%

\bibitem{2007_Maw} Mawhin J., (2007). Jean Leray and nonlinear integral equations: A partially forgotten legacy, \textit{Journal of Fixed Point Theory and Applications}, \textbf{1}(2), 159--187. )

\MR{2336608} \ZBL{1147.45001}

%

\bibitem{1930_Maz} Mazur S., (1930). \"Uber die kleinste konvexe Menge, die eine gegebene kompakte Menge enth\"alt, \textit{Studia Math.}, \textbf{2.1}, 7--9. \JFM{56.0091.01}

%

\bibitem{1933_Maz} Mazur S., (1933). \"Uber konvexe Mengen in linearen normierten R\"aumen, \textit{Studia Math.}, \textbf{4}, 70--84. \JFM{59.1074.01}

%

\bibitem{Mink} Minkowski H., (1911). Theorie der konvexen K\"orper, insbesondere Begr\"undung Ihres oberflachen, \textit{Bgriffs, Ges. Abhandl.}, \textbf{2}, Leipzig-Berlin, 131--229.

%

\bibitem{Morr} Morrison T. J., (2001). Functional Analysis. An Introduction to Banach Space Theory,

Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2001. xiv+359 pp. ISBN: 0-471-37214-5 \MR{1885114} \ZBL{1005.46004}

%

\bibitem{1934_Nem} Niemytzki V.,(1934). Th\'eor\`emes d'existence et d'unicit\'e des solutions de quelques \'equations int\'egrales non-lin\'eaires, \textit{Mat. Sb.}, \textbf{41}(3), 421--452. \ZBL{0011.02603}

%

\bibitem{1936_Nem} Nemytskii V. V., (1936). The fixed-point method in analysis, \textit{Uspekhi Mat. Nauk}, \textbf{1}, 141--174. ) \ZBL{0016.21404}

%

\bibitem{1932_Orlicz} Orlicz W., (1932). \"{U}ber eine gewisse Klasse von Raumen vom Typus B, \textit{Bull. Int. Acad. Polon. Sci. Ser. A}, 207--220. ) \ZBL{0006.31503}

%

\bibitem{1936_Orlicz} Orlicz W., (1936). \"{U}ber Raume $(L_M)$, \textit{Bull. Int. Acad. Polon. Sci., Ser. A}, 93--107. ) \ZBL{0014.16302}

%

\bibitem{Park} Park Sehie, (1999) Ninety years of the Brouwer fixed point theorem, \textit{Vietnam J. Math.}, \textbf{27}(3), 187--222. \MR{1811334} ) \ZBL{0938.54039}

%

\bibitem{Piet} Pietsch A., (2007) History of Banach Spaces and Linear Operators, )

Basel: Birkhäuser (ISBN 978-0-8176-4367-6/hbk; 978-0-8176-4596-0/ebook). xxiii, 855 p.

\MR{2300779} \ZBL{1121.46002}

%

\bibitem{Przen} Przenios\l o M., (2014) Kontakty naukowe polskich i rosyjskich matematyk\'{o}w w dwudziestoleciu mi\c{e}dzywojennym, \textit{Studia z Dziej\'{o}w Rosji i Europy \'{S}rodkowo-Wschodniej}, \textbf{XLIX}:1, 115--129.

%

\bibitem{RaoRen} Rao M.M., Ren Zhong Dao, (2002). Applications of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics, 250. Marcel Dekker, Inc., New York, xii+464 pp. ISBN: 0-8247-0730-3

\MR{1890178} \ZBL{0997.46027}

%

\bibitem{1927_Schaud} Schauder J., (1927). Zur Theorie stetiger Abbildungen in Funktionalr\"{a}umen, \textit{Math. Zeitschr.}, \textbf{26}(1), 47--65. )

\MR{1544841} \JFM{53.0374.01}

%

\bibitem{1930_Schaud} Schauder J., (1930). Der Fixpunktsatz in Funktionalr\"{a}umen, \textit{Studia Math.}, \textbf{2}, 171--180. \JFM{56.0355.01}

%

\bibitem{1932_Schaud} Schauder J., (1932). \"Uber den Zusammenhang zwischen der Eindeutigkeit und L\"osbarkeit partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, \textit{Math. Ann.}, \textbf{106} (1), 661--721. ) \ZBL{0004.35001}

%

\bibitem{Sieg} Siegberg H., ( 1981). Some historical remarks concerning degree theory, \textit{Amer. Math. Monthly} \textbf{88}(2), 125--139.

\MR{0606251} \ZBL{0463.55002}

%

\bibitem{Stewart} Stewart H.B., (1991). Application of fixed point theory to chaotic attractors of forced oscillators, \textit{Japan J. Indust. Appl. Math.} \textbf{8}, 487--506.

\MR{1137653} \ZBL{0743.58025}

%

\bibitem{Tikh} Tychonoff A., (1935). Ein Fixpunktsatz, \textit{Math. Annal.}, \textbf{111}, 767--776. )

\MR{1513031} \ZBL{0012.30803}

%

\bibitem{Urys} Urysohn P., (1924). Les classes (D) s\'eparables et l'espace hilbertein,\textit{ C.R.}, \textbf{178}, 65--67. ) \JFM{50.0133.01}

%

\bibitem{1927_Urys} Urysohn P., (1927) Sur un espace m\'{e}trique universel, I. II. Bulletin sc. Math. (2) 51, 43-64; 51, 74-90 . \JFM{53.0556.01}

%

\bibitem{Zaan} Zaanen A.C., (1946). On a certain class of Banach spaces, \textit{Ann. of Math.}, (2) \textbf{4} (47), 654--666.

\MR{0017468} \ZBL{0060.27505}

%

\bibitem{Zied} Zeidler E., (1986).

Nonlinear functional analysis and its applications. I: Fixed-point theorems. Transl. from the German by Peter R. Wadsack. (English) Springer-Verlag, New York, 1986. xxi+897 pp. ISBN: 0-387-90914-1

\MR{0816732} \ZBL{0583.47050}

Cité par Sources :