On History of Epsilontics
Antiquitates Mathematicae, Tome 10 (2016), pp. 183-204.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

This is a review of genesis of „ε-δ" language in works of mathematicians of the 19th century. It shows that although the symbols ε and δ were initially introduced in 1823 by Cauchy, no functional relationship for δ as a function of ε was ever ever specified by Cauchy. It was only in 1861 that the epsilon-delta method manifested itself to the full in Weierstrass de_nition of a limit. The article gives various interpretations of these issues later provided by mathematicians. This article presents the text [Sinkevich, 2012d] of the same author which is slightly redone and translated into English.
DOI : 10.14708/am.v10i0.805
Classification : 01A50, 01A55, 01A60
Mots-clés : History of mathematics, analysis, continuity, Lagrange, Ampére, Cauchy, Bolzano, Heine, Cantor, Weierstrass, Lebesgue, Dini
@article{10_14708_am_v10i0_805,
     author = {Galina Iwanowna Sinkiewicz},
     title = {On {History} of {Epsilontics}},
     journal = {Antiquitates Mathematicae},
     pages = { 183--204},
     publisher = {mathdoc},
     volume = {10},
     year = {2016},
     doi = {10.14708/am.v10i0.805},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/am.v10i0.805/}
}
TY  - JOUR
AU  - Galina Iwanowna Sinkiewicz
TI  - On History of Epsilontics
JO  - Antiquitates Mathematicae
PY  - 2016
SP  -  183
EP  - 204
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/am.v10i0.805/
DO  - 10.14708/am.v10i0.805
LA  - pl
ID  - 10_14708_am_v10i0_805
ER  - 
%0 Journal Article
%A Galina Iwanowna Sinkiewicz
%T On History of Epsilontics
%J Antiquitates Mathematicae
%D 2016
%P  183-204
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/am.v10i0.805/
%R 10.14708/am.v10i0.805
%G pl
%F 10_14708_am_v10i0_805
Galina Iwanowna Sinkiewicz. On History of Epsilontics. Antiquitates Mathematicae, Tome 10 (2016), pp.  183-204. doi : 10.14708/am.v10i0.805. http://geodesic.mathdoc.fr/articles/10.14708/am.v10i0.805/

[Alexandrova, 1978] N. Aleksandrova. Matematiqeskie terminy. Spravoqnik

(Mathematical terms. Handbook. In Russian). Moskva: Vysxa xkola, 1978.

[Ampére, 1806] A. Ampére. Recherches sur quelques points de la théorie des fonctions dérivées qui conduisent à une nouvelle démonstration de la série de Taylor et à l'expression nie des termes qu'on néglige lorsqu'on arrete cette sèrie á un terme quelconque. Mémoir par M. Ampére, Répétiteur à l'École Politechnique.

Journal de l'École Politechnique. - 1806. - Cahier 13. - P. 148-181.

[Bashmakova, 1986] I. Baxmakova. O roli interpretacii v istorii

matematiki (On the role of interpretation in the history of mathematics,

in Russian). Istoriko-matematiqeskie issledovani. Moskva: Nauka.

XXX:182-194, 1986.

[Belhoste, 1985] B. Belhoste. Cauchy, un Mathématician Légimiste au XIX siècle.

Paris : Belin, 1985.

[Belhoste, 1997] B . Belhost. Ogsten Koxi (Augustin Cauchy, in Russian). -

Moskva: Nauka, 1997.

[Błaszczyk, Katz, Sherry, 2013] P. Baaszcyk, M. Katz, D. Sherry. Ten misconceptions

from the history of analysis and their debunking. Foundations of Science.

18:1:43-74, 2013.

[Bolzano, 1817] B. Bolzano. Rein analytischer beweis des Lehrsatzes, dass zwischen

je zwey Werthen, die ein entgegengesetztes Resultat gewähren, wenigstens eine

reelle Wurzel der Gleichung liege. - Prag, 1817. Bernard Bolzano (1781-1848).

Bicentenary. Early mathematical works. Prague. 417-476,1981.

[Bolzano, 1851, 1911] B. Bol~cano. Paradoksy beskoneqnogo.1851. (Paradoxes

of innity, in Russian). Translation edited by I. Sleshinski. Odessa: Mathesis,

1911.

[Cajori, 1919] F. Cajori. A history of the conception of limits and uxions in Great

Britain from Newton to Woodhouse. Chicago, London, 1919.

[Cantor, 1872] G. Cantor. Ueber die Ausdehnung eines Satzes der Theorie der

trigonometrischen Reihen. Mathem. Annalen von Clebsch und Neumann. 5:123

132, 1872.

[Cauchy, 1821] A.-L. Cauchy. Cours d'Analyse de l'École Royale Polytechnique

(1821). Analyse Algébrique. Oeuvres. Ser. 2, t. 3. 1471.

[Cauchy, 1821, 1864] O. Koxi. Algebriqeski$i analiz (Analyse Algébrique, in

Russian), translated by F. val~d, V. Grigor~ev, A. Il~in. - Leipzig :

Druck von Bär & Hermann, 1864.

[Cauchy, 1823] A.-L. Cauchy, 1823. Résumé des leçons données sur le calcul in-

nitésimal. Oeuvres ser. 2, IV:9261.

[Cauchy (1823), 1831] O. Koxi. Kratkoe izloenie urokov o differencial~

nom i integral~nom isqislenii (Résumé des leçons données sur le

calcul innitésimal, in Russian). Translation by Bunkovski$i. St.-Petersburg.

1831.

[Cauchy, 1853] A.-L. Cauchy. Note sur les séries convergentes dont les divers termes

sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites

données. CR t. XXXVI, p.454, Oeuvres complètes série I,12:3036.1853.

[Cauchy, 2009] Cauchy's Cours d'analyse. An annotated English translation by R.E.

Bradley, C.E. Sandifer. Springer, 2009.

[Child, 1920] J. M. Child, (ed.), 1920. The early mathematical manuscripts of Leibniz.

Translated from the Latin texts published by Carl Immanuel Gerhardt with

critical and historical notes by J. M. Child. Chicago-London: The Open Court

Publishing Co. 1920.

[d'Alembert, 1765] J. d'Alembert. Limite. Encyclopédie méthodique ou par ordre

de matières. 1765, T.II Padoue, 311312. 17651789.

[Demidov, 1990] S. Demidov. \Zakon nepreryvnosti"Le$ibnica i pontie

nepreryvnosti funkcii u $ilera (Leibniz' law of continuity and the notion

of continuous function in Euler, in Russian). Istoriko-matematiqeskie

issledovani. XXXIIXXXIII, 3439, 1990.

[Dini, 1878] U. Dini. Fondamenti per la teoria delle funzioni di variabili reali. Pisa,

1878.

[Dorofeeva, 1971] A. Dorofeeva A. Formirovanie ponti nepreryvno$i

funkcii (The formation of the notion of continuous function, in Russian). Istori

i metodologi estestvennyh nauk. Moskva:Moscow State University.

- XI (Mathematics and mechanics). 3750, 1971.

[Dugac, 1972] P. Dugac. Éléments d'analyse de Karl Weierstrass. Paris, 1972.

[Dugac, 1973] P. Dgak Pontie predela i irracional~nogo qisla, koncepcii

Xarl Mere i Karla Ve$ierxtrassa (The notion of a limit and irrational

number, concepts of Charles Méray and Karl Weierstrass, in Russian).

Istoriko-matematiqeskie issledovani. XVIII:176180. 1973.

[Euler, 1748] L. $iler. Vvedenie v analiz beskoneqno malyh (Introductio in

analysin innitorum, in Russian). - Moskva: Fizmatgiz, Vol. II. , 1961.

[Euler, 1755] L. $iler. Nastavlenie po differencia nomu isqisleni. (Institutiones

calcului dierentialis, in Russian). In : L. $iler. Differencia -

noe isqislenie (Euler. Dierential calculus, in Russian), 2 vol. Moskva-

Leningrad: Gostehizdat, 1949.

[Fourier, 1822] J.B. Fourier. Théorie analitique de la chaleur. Oeuvres. Paris, v. 1,

1822.

[Gauss, 1800, 1917] K.F. Gauss. Grundbegrie der Lehre von der Reihen. Werke.

Leipzig : B. Bd. X/1: 390394, 1917.

[Grabiner, 1983] J. Grabiner. Who gave you the Epsilon? Cauchy and the Origin of

Rigorous Calculus. The American Mathematical Monthly. March. 90: 3:185194,

1983.

[Grattan-Guinness, 1970] I. Grattan-Guinness. Bolzano, Cauchy and the New

Analysisof the Early Nineteenth Century. Archive for History of Exact Sciences.

Springer Verlag. Berlin-Heidelberg-New York. 6, 35, 372400, 1970.

[Grattan-Guinness 2004] I. Grattan-Guinness. The mathematics of the past: distinguish

its history from our heritage. Historia mathematica 31:163-185, 2004.

[Gray, 2008] J. Gray. Plato's ghost. The modern transformation of mathematics.

NY, Princeton:Princeton University Press, 2008.

[Hankel, 1870/71] H. Hankel. Grenze. Allgemeine Enzyklopädie der Wissenschaften

und Künste. Leipzig. Vol. 90, 185211, 1870/71.

[Heine, 1872] H.E. Heine. Die Elemente der Functionenlehre. J. reine angew. Math.

74, 172-188, 1872.

[L'Huilier, 1786] S.-A.-J. L'Huilier. Exposition Élémentaire des Principles des calcul

supérieurs. 1786.

[Katz, Sherry, 2012] M. Katz, D. Sherry, D. Leibniz's laws of continuity and homogeneity.

Notices of the American Mathematical Society. 59:11,15501558, 2012.

[Koetsier, 2009] T. Koetsier, T. Lakatos, Lako and Nú¬ez: Towards a Satisfactory

Denition of Continuity. In Explanation and Proof in Mathematics. Philosophical

and Educational Perspectives. Edited by G. Hanna, H. Jahnke, and H. Pulte.

Springer, 2009.

[Lacroix, 1797] S.F. Lacroix. Traité du calcul dierentiel et du calcul intégral. Paris,

1797, 1798, 1800.

[Lacroix, 1806] S.F. Lacroix, S. F. Traité élementaire de calcul diérentiel et de

calcul intégral. Paris, 1806, 1828.

[Lagrange, 1797, 1881] J. Lagrange. Théorie des fonctions analytique. Oeuvres de

Lagrange. 9. Paris,1881.

[Lagrange, 1811] J. Lagrange. Mécanique analytique. V.1 Paris. 2-m ed., 1811.

[Leathem, 1905] J.G. Leathem. Volume and Surface Integrals Used in Physics. Cambridge,

1905.

[Lebesgue, 1904, 1934] A. Lebeg. Integrirovanie i otyskanie primitivnyh

funkci$i. (Leçons sur l'intégration et la recherché des fonctions primitives, in

Russian). Moskva-Leningrad, 1934.

[Méray, 1872] Ch. Méray. Nouveau précis d'analyse innitésimale. Par Charles

Méray. Publication : F. Savy. XXIII. Paris, 1872.

[Putnam, 1974] H. Putnam. What is mathematical truth? Proceedings of the American

Academy Workshop on the Evolution of Modern Mathematics. Boston,

Mass., 1974; Historia Mathematica. 2:4:529533, 1975.

[Seidel, 1847] Ph.L. Seidel. Note über eine Eigenschaft der Reihen, welche discontinuirliche

Functionen darstellen. Abhandl. Der Math. Phys. Klasse der Kgl.

Bayerschen Akademie der Wissenschaften V: 381394, München 1847.

[Sinkevich, 2012a] G.I. Sinkeviq. Uliss Dini i pontie nepreryvnosti

(Uliss Dini and the notion of continuity, in Russian). Istori nauki i tehhniki.

Moskva. 10:3-11, 2012.

[Sinkevich, 2012b] G.I. Sinkeviq. Genrih duard Ge$ine. Teori funkci$i.

(Heinrich Eduard Heine. Function theory. In Russian). Matematiqeskoe modelirovanie,

qislennye metody i kompleksy programm. St.-Peterburg.

18:646, 2012.

[Sinkevich, 2012c] G.I. Sinkeviq. Razvitie ponti nepreryvnosti u X.

Mere. (The development of continuity notion in Ch. Méray'). Trudy X Me-

dunarodnyh Kolmogorovskih qteni$i. (Proceeding of X Kolmogorov's reading).

roslavl~. 180185, 2012.

[Sinkevich, 2012d] G.I. Sinkeviq. K istorii psilontiki (To the history of

epsilontics, in Russian). Matematika v vysxem obrazovanii. 10:149166.

2012.

[Stokes, 1849] G. G. Stokes. On the critical values of the sums of periodic series,

Transactions of the Cambridge Philosophical Society, 8 : 533583. (presented:

1847 ; published: 1849).

[Stolz, 1881] O. Stolz. B. Bolzano's Bedeutung in der Geschichte der Innitesimalrechnung.

Mathematische Annalen. 18: 255279, 1881.

[Stolz, 1885] O. Stolz. Vorlesungen über allgemeine Arithmetik: Nach den neueren

Ansichten. Leipzig, Bd. I:156157, 1885.

[Wallis (1656), 2004] L. Wallis. The arithmetic of Innitesimals. Translated by J.A.

Stedall. USA: Springer. 2004.

[Weierstrass, 1886,1989] K. Weierstrass. Ausgewählte Kapitel aus der Funktionenlehre.

Vorlesung gehalten in Berlin 1886 mit der Akademischen Antrittsrede,

Berlin 1857 und drei weiteren Originalarbeiten von K.Weierstrass aus den Jahren

1870 bis 1880/86. Teubner-Archiv zur mathematic. Band 9. Reprint 1989.

[Yushkevich, 1972] A.xkeviq. Istori matematiki (The History of Mathematics,

in Russian). Edited by A.xkeviq. Moskva: Nauka. Vol. 3, 1972.

[Yushkevich, 1973] A.xkeviq. L. Karno i konkurs Berlinsko$i Akademii

Nauk 1786 na temu o matematiqesko$i teorii beskoneqnogo (L.Carnot

and the competition of Berlin Academy of Sciences 1786 on the mathematical

theory of innite, in Russian). Istoriko-matematiqeskie issledovani.

XVIII:132156, 1973.

[Yushkevich, 1977] A. xkeviq. Hrestomati po istorii matematiki.

Matematiqeski$i analiz (Khrestomatiya po istorii matematiki. Matematicheskiy

analizReading book on the history of mathematics. Analysis. In Russian),

edited by A.xkeviq. Moskva: Prosvewenie, 1977.

[Yushkevich, 1986] A. xkeviq. Razvitie ponti predela do K.

Ve$ierxtrassa (The development of the notion of limit till K. Weierstrass.

In Russian). Istoriko-matematiqeskie issledovania. Moskva: Nauka.

XXX:181, 1986.

Cité par Sources :