Synthetic pulse wave dataset for analysis of vascular ageing in elderly patients
Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 20.

Voir la notice de l'article provenant de la source EDP Sciences

This paper presents a methodology to generate synthetic pulse wave database. Each virtual subject is generated with the help of one-dimensional hemodynamics model of systemic circulation with lumped model of the left heart. This paper describes and compares two parameter optimization methods: unscented Kalman filter and Bayesian optimization. As a case study, an experiment is conducted to predict cardio-ankle vascular index (CAVI) values for real individuals with a machine learning algorithm trained on a synthetic population. The average error of 6.5% is achieved
DOI : 10.1051/mmnp/2024017

Artem Rogov 1, 2 ; Timur Gamilov 1, 2, 3 ; Anna Bragina 1, 4 ; Magomed Abdullaev 1 ; Natalia Druzhinina 1, 4 ; Yuliya Rodionova 1, 4 ; Rustam Shikhmagomedov 4 ; Maksim Tyulin 4 ; Valeriy Podzolkov 4

1 World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow StateMedical University, 19991 Moscow, Russia
2 Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
3 Department of Mathematical Modelling of Processes and Materials, Sirius University of Science and Technology, 354340 Sochi, Russia
4 I.M. Sechenov First Moscow State Medical University (Sechenov University), 19991, Moscow, Russia
@article{MMNP_2024_19_a15,
     author = {Artem Rogov and Timur Gamilov and Anna Bragina and Magomed Abdullaev and Natalia Druzhinina and Yuliya Rodionova and Rustam Shikhmagomedov and Maksim Tyulin and Valeriy Podzolkov},
     title = {Synthetic pulse wave dataset for analysis of vascular ageing in elderly patients},
     journal = {Mathematical modelling of natural phenomena},
     eid = {20},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     doi = {10.1051/mmnp/2024017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024017/}
}
TY  - JOUR
AU  - Artem Rogov
AU  - Timur Gamilov
AU  - Anna Bragina
AU  - Magomed Abdullaev
AU  - Natalia Druzhinina
AU  - Yuliya Rodionova
AU  - Rustam Shikhmagomedov
AU  - Maksim Tyulin
AU  - Valeriy Podzolkov
TI  - Synthetic pulse wave dataset for analysis of vascular ageing in elderly patients
JO  - Mathematical modelling of natural phenomena
PY  - 2024
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024017/
DO  - 10.1051/mmnp/2024017
LA  - en
ID  - MMNP_2024_19_a15
ER  - 
%0 Journal Article
%A Artem Rogov
%A Timur Gamilov
%A Anna Bragina
%A Magomed Abdullaev
%A Natalia Druzhinina
%A Yuliya Rodionova
%A Rustam Shikhmagomedov
%A Maksim Tyulin
%A Valeriy Podzolkov
%T Synthetic pulse wave dataset for analysis of vascular ageing in elderly patients
%J Mathematical modelling of natural phenomena
%D 2024
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024017/
%R 10.1051/mmnp/2024017
%G en
%F MMNP_2024_19_a15
Artem Rogov; Timur Gamilov; Anna Bragina; Magomed Abdullaev; Natalia Druzhinina; Yuliya Rodionova; Rustam Shikhmagomedov; Maksim Tyulin; Valeriy Podzolkov. Synthetic pulse wave dataset for analysis of vascular ageing in elderly patients. Mathematical modelling of natural phenomena, Tome 19 (2024), article  no. 20. doi : 10.1051/mmnp/2024017. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024017/

[1] I. Ghebrehiwet, N. Zaki, R. Damseh, Rafat, M. Mohamad Revolutionizing personalized medicine with generative AI: a systematic review Artif. Intell. Rev. 2024 128

[2] M. Craig, J.L. Gevertz, I. Kareva, K.P. Wilkie A practical guide for the generation of model-based virtual clinical trials Front. Syst. Biol. 2023 5287 5303

[3] M.-C. Gosselin, E. Neufeld, H. Moser, E. Huber, S. Farcito, L. Gerber, M. Jedensjo, I. Hilber, F. Di Gennaro, B. Lloyd, E. Cherubini, D. Szczerba, W. Kainz, N. Kuster Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0 Phys. Med. Biol. 2014 5287 5303

[4] R.J. Allen, T.R. Rieger, C.J. Musante Efficient generation and selection of virtual populations in quantitative systems pharmacology models CPT Pharmacometrics Syst. Pharmacol. 2016 140 146

[5] P.H. Charlton, J. Mariscal Harana, S. Vennin, Y. Li, P. Chowienczyk, J. Alastruey Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes Am. J. Phys. Heart Circ. Physiol. 2019 H1062 H1085

[6] M.A. Remli, S. Deris, M.S. Mohamad, S. Omatu, J.M. Corchado An enhanced scatter search with combined opposition-based learning for parameter estimation in large-scale kinetic models of biochemical systems Eng. Appl. Artif. Intell. 2017 164 180

[7] H. Saxton, T. Schenkel, I. Halliday, X. Xu Personalised parameter estimation of the cardiovascular system: Leveraging data assimilation and sensitivity analysis J. Computat. Sci. 2023 102158

[8] D. Nolte, C. Bertoglio Inverse problems in blood flow modeling: a review Int. J. Numer. Method Biomed. Eng. 2022 e3613

[9] P.I. Frazier, A Tutorial on Bayesian Optimization. (2018) arXiv:1807.02811 [stat.ML].

[10] B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. De Freitas Taking the human out of the loop: a review of bayesian optimization Proc. IEEE 2016 148 175

[11] E.A. Wan and R. Van Der Merwe, The unscented Kalman filter for nonlinear estimation. Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373). Lake Louise, AB, Canada, (2000) 153–158.

[12] P. Moireau, D. Chapelle Reduced-order unscented Kalman filtering with application to parameter identification in large-dimensional systems ESAIM Control Optim. Calc. Var. 2011 380 405

[13] R. Lal, B. Mohammadi, F. Nicoud Data assimilation for identification of cardiovascular network characteristics Int. J. Numer. Methods Biomed. Eng. 2017 e2824

[14] A. Caiazzo, F. Caforio, G. Montecinos, L.O. Muller, P.J. Blanco, E.F. Toro Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data Int. J. Numer. Methods Biomed. Eng. 2017 e2843

[15] A. Giani, R. Micciolo, E. Zoico, G. Mazzali, M. Zamboni, F. Fantin Cardio-ankle vascular index and aging: differences between CAVI and CAVI0 J. Clin. Med. 2023 6726

[16] J. Ibata, H. Sasaki, T. Kakimoto, S. Matsuno, M. Nakatani, M. Kobayashi, K. Tatsumi, Y. Nakano, H. Wakasaki, H. Furuta, M. Nishi, K. Nanjo Cardio-ankle vascular index measures arterial wall stiffness independent of blood pressure Diabetes Res. Clin. Pract. 2008 265 270

[17] T. Gamilov, S. Simakov Blood flow under mechanical stimulations Adv. Intell. Syst. Comput. 2020 143 150

[18] S. Simakov, A. Timofeev, T. Gamilov, P. Kopylov, D. Telyshev, Y. Vassilevski Analysis of the impact of left ventricular assist devices on the systemic circulation Russ. J. Numer. Anal. Math. Model. 2020 295 314

[19] E. Boileau, P. Nithiarasu, P.J. Blanco, L.O. Müller, F.E. Fossan, L.R. Hellevik, W.P. Donders, W. Huberts, M. Willemet, J. Alastruey A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling Int. J. Numer. Method Biomed. Eng. 2015 e02722

[20] T. Korakianitis, Y. Shi Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves J. Biomechanics 2006 1964 1982

[21] Y. Sun, B.J. Sjoüberg, P. Ask, D. Loyd, B. Wranne Mathematical model that characterizes transmitral and pulmonary venous flow velocity patterns Am. J. Physiol. 1995 H476 H489

[22] D.F. Young, F.Y. Tsai Flow characteristics in models of arterial stenoses. I. Steady flow J. Biomechanics 1973 395 410

[23] D.F. Young, F.Y. Tsai Flow characteristics in models of arterial stenoses. II. Unsteady flow J. Biomechanics 1973 547 559

[24] T. Korakianitis, Y. Shi A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction Med. Eng. Phys. 2006 613 628

[25] J. Stamler, R. Stamler, J.D. Neaton Blood pressure, systolic and diastolic, and cardiovascular risks: US population data Arch. Intern. Med. 1993 598 615

[26] S.S. Hickson, M. Butlin, M. Graves, V. Taviani, A.P. Avolio, C.M. Mceniery, I.B. Wilkinson The relationship of age with regional aortic stiffness and diameter JACC Cardiovasc. Imaging 2010 1247 1255

[27] A. Borowska, H. Gao, A. Lazarus, D. Husmeier Bayesian optimisation for efficient parameter inference in a cardiac mechanics model of the left ventricle Int. J. Numer. Method Biomed. Eng. 2022 e3593

[28] V.A. Milyagin, I.V. Milyagina, M.A. Purygina and T.A. Osipenkova, Method of Volume Sphygmography on VaSera VS-1500 N Device. Methodical Recommendations. Smolensk (2014) 30.

[29] Yu.A. Vasyuk, S.V. Ivanova, E.L. Shkolnik, Yu.V. Kotovskaya, V.A. Milyagin, V.E. Oleynikov, Ya.A. Orlova, A.N. Sumin, A.A. Baranov, S.A. Boytsov, A.S. Galyavich, Zh.D. Kobalava, O.V. Kozhevnikova, A.O. Konradi, Yu.M. Lopatin, V.Yu. Mareev, D.S. Novikova, R.G. Oganov, A.N. Rogoza, O.P. Rotar, N.V. Sergatskaya, V.V. Skibitsky Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice Cardiovasc. Ther. Prev. 2016 4 19

[30] T. Okura, S. Watanabe, M. Kurata, S. Manabe, M. Koresawa, J. Irita, D. Enomoto, K. Miyoshi, T. Fukuoka, J. Higaki Relationship between cardio-ankle vascular index (CAVI) and carotid atherosclerosis in patients with essential hypertension Hypertens. Res. 2007 335 340

[31] T. Kumagai, T. Kasai, M. Kato, R. Naito, K.I. Maeno, S. Kasagi, F. Kawana, S. Ishiwata, K. Narui Establishment of the cardio-ankle vascular index in patients with obstructive sleep apnea Chest 2009 779 786

Cité par Sources :