Patient-specific input data for predictive modelling of the Fontan procedure
Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 16.

Voir la notice de l'article provenant de la source EDP Sciences

Personalized blood flow models are used for optimization of the Fontan procedure. In this paper we discuss clinical data for model initialization. Before the Fontan procedure patients undergo CT or MRI examination. Computational domain of interest is reconstructed from this data. CT images are shown to have a better spatial resolution and quality and are more suitable for segmentation. MRI data gives information about blood flow rates and it is utilized for setting boundary conditions in local 3D hemodynamic models. We discovered that the MRI data is contradictory and too inaccurate for setting boundary conditions: the error of measured velocities is comparable with blood velocities in veins. We discuss a multiscale 1D3D circulation model as potentially suitable for prediction of the Fontan procedure results. Such model may be initialized with more reliable data (MR measurements of blood flow in aorta and ultrasound examination of easily accessible vessels) and take into account collateral and fenestration blood flows which are typical for Fontan patients. We have calculated these flow rates for several patients and demonstrated that such flows occur systematically.
DOI : 10.1051/mmnp/2024013

Tatiana Dobroserdova 1 ; Lyudmila Yurpolskaya 2 ; Yuri Vassilevski 1, 3 ; Andrey Svobodov 4

1 Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, 8 Gubkina str., Moscow 119333, Russia
2 A. N. Bakulev National Medical Research Center of Cardiovascular Surgery of the Ministry of Health of the Russian Federation, Rublevskoe Shosse 135, Moscow 121552, Russia
3 Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russia; Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia; Sirius University, Olympic pr., 1, Sochi 354340, Russia
4 State Budgetary Healthcare Institution of Moscow Region Children’s Clinical Hospital named after L.M.Roshal, 85 Varshavskoe Shosse, derevnia Borodino, Podolsk, Moscow Region 142117, Russia
@article{MMNP_2024_19_a18,
     author = {Tatiana Dobroserdova and Lyudmila Yurpolskaya and Yuri Vassilevski and Andrey Svobodov},
     title = {Patient-specific input data for predictive modelling of the {Fontan} procedure},
     journal = {Mathematical modelling of natural phenomena},
     eid = {16},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     doi = {10.1051/mmnp/2024013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024013/}
}
TY  - JOUR
AU  - Tatiana Dobroserdova
AU  - Lyudmila Yurpolskaya
AU  - Yuri Vassilevski
AU  - Andrey Svobodov
TI  - Patient-specific input data for predictive modelling of the Fontan procedure
JO  - Mathematical modelling of natural phenomena
PY  - 2024
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024013/
DO  - 10.1051/mmnp/2024013
LA  - en
ID  - MMNP_2024_19_a18
ER  - 
%0 Journal Article
%A Tatiana Dobroserdova
%A Lyudmila Yurpolskaya
%A Yuri Vassilevski
%A Andrey Svobodov
%T Patient-specific input data for predictive modelling of the Fontan procedure
%J Mathematical modelling of natural phenomena
%D 2024
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024013/
%R 10.1051/mmnp/2024013
%G en
%F MMNP_2024_19_a18
Tatiana Dobroserdova; Lyudmila Yurpolskaya; Yuri Vassilevski; Andrey Svobodov. Patient-specific input data for predictive modelling of the Fontan procedure. Mathematical modelling of natural phenomena, Tome 19 (2024), article  no. 16. doi : 10.1051/mmnp/2024013. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024013/

[1] A. Corno, M. Owen, A. Cangiani, E. Hall and A. Rona, Physiological Fontan procedure. Front. Pediatr. 7 (2019).

[2] M. Schafstedde, P. Yevtushenko, S. Nordmeyer, et al., Virtual treatment planning in three patients with uni- ventricular physiology using computational fluid dynamics-pitfalls and strategies. Front. Cardiovasc. Med. 9 (2022).

[3] K. Marshall, Y. D’Udekem, G. Sholler Health-related quality of life in children, adolescents, and adults with a Fontan circulation: a meta-analysis J. Am. Heart Assoc. 2020 e014172

[4] T. Fredenburg, T. Johnson, M. Cohen The Fontan procedure: anatomy, complications, and manifestations of failure RadioGraphics 2011 453 463

[5] I. Schwartz, C. Mccracken, Ch. Petit, R. Sachdeva Late outcomes after the fontan procedure in patients with single ventricle: a meta-analysis Heart 2018 1508 1514

[6] P. Trusty, T. Slesnick, Z. Wei Fontan surgical planning: previous accomplishments, current challenges, and future directions J. Cardiovasc. Trans. Res. 2018 133 144

[7] D. De Zelicourt, V. Kurtcuoglu Patient-specific surgical planning, where do we stand? The example of the Fontan procedure Ann. Biomed. Eng. 2016 174 186

[8] W. Yang, F. Chan, V. Reddy Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure J. Thorac. Cardiovasc. Surg. 2015 247 255

[9] A. Baretta, C. Corsini, W. Yang Modelling of congenital hearts alliance (MOCHA) investigators. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case Philos. Trans. 2011 4316 4330

[10] F. Raimondi, D. Martins, R. Coenen Prevalence of venovenous shunting and high-output state quantified with 4D flow MRI in patients with Fontan circulation Radiology Cardiothorac. Imaging 2021 e210161

[11] K. Whitehead, M. Harris, A. Glatz Status of systemic to pulmonary arterial collateral flow after the Fontan procedure Am. J. Cardiol. 2015 1739 1745

[12] T. Dobroserdova, Yu. Vassilevski, S. Simakov Two-scale haemodynamic modelling for patients with Fontan circulation Russ. J. Numer. Anal. Math. Model. 2021 267 278

[13] Yu. Vassilevski, M. Olshanskii, S. Simakov, et al., Personalized Computational Hemodynamics. Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy. Academic Press (2020).

[14] P. Hoskins, K. Martin and A. Thrush, Diagnostic Ultrasound: Physics and Equipment, 2nd edn. Cambridge: Cambridge University, 2010.

[15] P. Ciliberti, P. Ciancarella, P. Brun, et al., Cardiac imaging in patients after Fontan palliation: which test and when? frontiers in pediatrics. Front Pediatr. 10 (2022).

[16] T. Leiner, J. Bogaert, M. Friedrich, et al., SCMR position paper (2020) on clinical indications for cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 22 (2020).

[17] S. Moscatelli, N. Borrelli, J. Sabatino, et al., Role of cardiovascular imaging in the follow-up of patients with Fontan. Circulation 9 (2022).

[18] P. Ciliberti, P. Ciancarella, P. Brun, et al., Cardiac imaging in patients after Fontan palliation: which test and ehen? Front. Pediatr. 10 (2022).

[19] T. Leiner, J. Bogaert, M. Friedrich, et al., SCMR position paper (2020) on clinical indications for cardiovascular magnetic Resonance. J. Cardiovasc. Magn. Reson. 22 (2020).

[20] W. Loughborough, M. Yeong, M. Hamilton Computed tomography in congenital heart disease: how generic principles can be applied to create bespoke protocols in the Fontan circuit Quant. Imaging Med. Surg. 2017 79 87

[21] K. Pushparajah, Ph. Duong, S. Mathur Cardiovascular MRI and CT in congenital heart disease Echo Res. Pract. 2019 R121 R138

[22] T. Leiner, J. Bogaert, M. Friedrich, et al., SCMR position paper (2020) on clinical indications for cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 22 (2020).

[23] P. Yushkevich, J. Piven, C. Heather User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability Neuroimage 2006 1116 1128

[24] M. Terada, Y. Takehara, H. Isoda Technical background for 4D flow MR imaging Magn. Reson. Med. Sci. 2022 267 277

[25] H. Isoda, A. Fukuyama Quality control for 4D flow MR imaging Magn. Reson. Med. Sci. 2022 278 292

[26] H. Ha Accuracy evaluation of blood flow distribution in the Fontan circulation: effects of resolution and velocity noise J. Visual 2019 245 257

[27] J. Geiger, F. Callaghan, B. Burkhardt Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: application in neonates and young children Pediatr. Radiol. 2021 1503 1517

[28] K. Jarvis, S. Schnell, A. Barker Caval to pulmonary 3D flow distribution in patients with Fontan circulation and impact of potential 4D flow MRI error sources Magn. Reson. Med. 2019 1205 1218

[29] J. Garay, H. Mella, J. Sotelo, et al., Assessment of 4D flow MRI’s quality by verifying its Navier-Stokes compatibility. Magn. Reson. Med. 38 (2022).

[30] D. Rutkowski, G. Barton, Ch. Francois Analysis of cavopulmonary and cardiac flow characteristics in Fontan patients: comparison with healthy volunteers J. Magn. Reson. Imaging 2019 1786 1799

[31] F. Puricelli, I. Voges, P. Gatehouse, et al., Performance of cardiac MRI in pediatric and adult patients with Fontan circulation. Radiol. Cardiothorac. Imaging 4 (2022).

[32] Ph. Trusty, T. Slesnick, Zh. Wei Fontan surgical planning: previous accomplishments, current challenges, and future directions J. Cardiovasc. Transl. Res. 2018 133 144

[33] S. Fratz, T. Chung, G. Greil, et al., Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J. Cardiovasc. Magn. Reson. 15 (2013).

[34] A. Stalder, M. Russe, A. Frydrychowicz Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters Magn Reson. Med. 2008 1218 1231

[35] L. Brix, S. Ringgaard, A. Rasmusson, et al., Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions. J. Cardiovasc. Magn. Reson. 11 (2009).

[36] M. Gabbour, S. Schnell, K. Jarvis 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography Pediatr. Radiol. 2015 804 813

[37] K. Jarvis, M. Vonder, A. Barker Hemodynamic evaluation in patients with transposition of the great arteries after the arterial switch operation: 4D flow and 2D phase contrast cardiovascular magnetic resonance compared with Doppler echocardiography J. Cardiovasc. Magn. Reson. 2016 59

[38] M. Sieren, C. Berlin, T. Oechtering, et al., Comparison of 4D flow MRI to 2D flow MRI in the pulmonary arteries in healthy volunteers and patients with pulmonary hypertension. PLoS One 14 (2019).

[39] B. Burkhardt, Ch. Kellenberger, F. Callaghan Flow evaluation software for four-dimensional flow MRI: a reliability and validation study Acad. Radiol. 2023 1225 1235

[40] A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, in Computational Models for the Human Body. Vol. 12 of Handbook of Numerical Analysis. Elsevier (2004) 3–127.

[41] T. Gamilov, Yu. Ivanov, P. Kopylov Patient specific haemodynamic modeling after occlusion treatment in leg Math. Model. Nat. Phenom. 2014 85 97

[42] D. Burenchev, F. Kopylov, A. Bykova Mathematical modelling of circulation in extracranial brachocephalic arteries at pre-operation stage in carotid endarterectomy Russ. J. Cardiol. 2017 88 92

Cité par Sources :