Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2024_19_a7, author = {P\'eter Kevei and M\'at\'e Szalai}, title = {Branching model with state dependent offspring distribution for {Chlamydia} spread}, journal = {Mathematical modelling of natural phenomena}, eid = {14}, publisher = {mathdoc}, volume = {19}, year = {2024}, doi = {10.1051/mmnp/2024011}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024011/} }
TY - JOUR AU - Péter Kevei AU - Máté Szalai TI - Branching model with state dependent offspring distribution for Chlamydia spread JO - Mathematical modelling of natural phenomena PY - 2024 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024011/ DO - 10.1051/mmnp/2024011 LA - en ID - MMNP_2024_19_a7 ER -
%0 Journal Article %A Péter Kevei %A Máté Szalai %T Branching model with state dependent offspring distribution for Chlamydia spread %J Mathematical modelling of natural phenomena %D 2024 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024011/ %R 10.1051/mmnp/2024011 %G en %F MMNP_2024_19_a7
Péter Kevei; Máté Szalai. Branching model with state dependent offspring distribution for Chlamydia spread. Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 14. doi : 10.1051/mmnp/2024011. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024011/
[1] Mathematical modelling of chlamydia ANZIAM J. C201 C214
[2] Optimal proliferation and differentiation of chlamydia trachomatis Stud. Appl. Math. 2017 129 178
,[3] Stochastic chlamydia dynamics and optimal spread Bull. Math. Biol. 2021 35
, , ,[4] Replication-dependent size reduction precedes differentiation in chlamydia trachomatis Nat. Commun. 2018 3884 3891
, , , , , , , , , ,[5]
[6] M. Kimmel and D.E. Axelrod, Branching processes in biology, Vol. 19 of Interdisciplinary Applied Mathematics, 2nd edn. Springer, New York (2015).
[7] Stochastic modeling of in vitro bactericidal potency Bull. Math. Biol. 2022 18
, , ,[8] O. Hernández-Lerma and J.B. Lasserre, Discrete-time Markov control processes. Vol. 30 of Applications of Mathematics (New York). Springer-Verlag, New York (1996).
[9] M. Kimmel, Quasistationarity in a branching model of division-within-division, in Classical and Modern Branching Processes (Minneapolis, MN, 1994). Vol. 84 of IMA Vol. Math. Appl.. Springer, New York (1997) 157–164.
[10] Spread of parasites affecting death and division rates in a cell population Stochastic Process. Appl. 2024 31
,[11] Chlamydia cell biology and pathogenesis Nat. Rev. Microbiol. 2016 385 400
, ,Cité par Sources :