@article{10_1051_mmnp_2024011,
author = {P\'eter Kevei and M\'at\'e Szalai},
title = {Branching model with state dependent offspring distribution for {Chlamydia} spread},
journal = {Mathematical modelling of natural phenomena},
eid = {14},
year = {2024},
volume = {19},
doi = {10.1051/mmnp/2024011},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024011/}
}
TY - JOUR AU - Péter Kevei AU - Máté Szalai TI - Branching model with state dependent offspring distribution for Chlamydia spread JO - Mathematical modelling of natural phenomena PY - 2024 VL - 19 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024011/ DO - 10.1051/mmnp/2024011 LA - en ID - 10_1051_mmnp_2024011 ER -
%0 Journal Article %A Péter Kevei %A Máté Szalai %T Branching model with state dependent offspring distribution for Chlamydia spread %J Mathematical modelling of natural phenomena %D 2024 %V 19 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024011/ %R 10.1051/mmnp/2024011 %G en %F 10_1051_mmnp_2024011
Péter Kevei; Máté Szalai. Branching model with state dependent offspring distribution for Chlamydia spread. Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 14. doi: 10.1051/mmnp/2024011
[1] Mathematical modelling of chlamydia ANZIAM J. C201 C214
[2] , Optimal proliferation and differentiation of chlamydia trachomatis Stud. Appl. Math. 2017 129 178
[3] , , , Stochastic chlamydia dynamics and optimal spread Bull. Math. Biol. 2021 35
[4] , , , , , , , , , , Replication-dependent size reduction precedes differentiation in chlamydia trachomatis Nat. Commun. 2018 3884 3891
[5]
[6] M. Kimmel and D.E. Axelrod, Branching processes in biology, Vol. 19 of Interdisciplinary Applied Mathematics, 2nd edn. Springer, New York (2015).
[7] , , , Stochastic modeling of in vitro bactericidal potency Bull. Math. Biol. 2022 18
[8] O. Hernández-Lerma and J.B. Lasserre, Discrete-time Markov control processes. Vol. 30 of Applications of Mathematics (New York). Springer-Verlag, New York (1996).
[9] M. Kimmel, Quasistationarity in a branching model of division-within-division, in Classical and Modern Branching Processes (Minneapolis, MN, 1994). Vol. 84 of IMA Vol. Math. Appl.. Springer, New York (1997) 157–164.
[10] , Spread of parasites affecting death and division rates in a cell population Stochastic Process. Appl. 2024 31
[11] , , Chlamydia cell biology and pathogenesis Nat. Rev. Microbiol. 2016 385 400
Cité par Sources :