Branching model with state dependent offspring distribution for Chlamydia spread
Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 14.

Voir la notice de l'article provenant de la source EDP Sciences

Chlamydiae are bacteria with an interesting unusual developmental cycle. Initially, a single bacterium in its infectious form (elementary body, EB) enters the host cell, where it converts into its dividing form (reticulate body, RB), and divides by binary fission. Since only the EB form is infectious, before the host cell dies, RBs start to convert into EBs. After the host cell dies RBs do not survive. We model the population growth by a 2-type discrete-time branching process, where the probability of duplication depends on the state. Maximizing the EB production leads to a stochastic optimization problem. Simulation study shows that our novel model is able to reproduce the main features of the development of the population.
DOI : 10.1051/mmnp/2024011

Péter Kevei 1 ; Máté Szalai 1

1 Bolyai Institute, University of Szeged, Szeged, Hungary
@article{MMNP_2024_19_a7,
     author = {P\'eter Kevei and M\'at\'e Szalai},
     title = {Branching model with state dependent offspring distribution for {Chlamydia} spread},
     journal = {Mathematical modelling of natural phenomena},
     eid = {14},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     doi = {10.1051/mmnp/2024011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024011/}
}
TY  - JOUR
AU  - Péter Kevei
AU  - Máté Szalai
TI  - Branching model with state dependent offspring distribution for Chlamydia spread
JO  - Mathematical modelling of natural phenomena
PY  - 2024
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024011/
DO  - 10.1051/mmnp/2024011
LA  - en
ID  - MMNP_2024_19_a7
ER  - 
%0 Journal Article
%A Péter Kevei
%A Máté Szalai
%T Branching model with state dependent offspring distribution for Chlamydia spread
%J Mathematical modelling of natural phenomena
%D 2024
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024011/
%R 10.1051/mmnp/2024011
%G en
%F MMNP_2024_19_a7
Péter Kevei; Máté Szalai. Branching model with state dependent offspring distribution for Chlamydia spread. Mathematical modelling of natural phenomena, Tome 19 (2024), article  no. 14. doi : 10.1051/mmnp/2024011. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024011/

[1] D.P. Wilson Mathematical modelling of chlamydia ANZIAM J. C201 C214

[2] F.Y.M. Wan, G.A. Enciso Optimal proliferation and differentiation of chlamydia trachomatis Stud. Appl. Math. 2017 129 178

[3] G. Enciso, C. Sütterlin, M. Tan, F.Y.M. Wan Stochastic chlamydia dynamics and optimal spread Bull. Math. Biol. 2021 35

[4] J.K. Lee, G.A. Enciso, D. Boassa, C.N. Chander, T.H. Lou, S.S. Pairawan, M.C. Guo, F.Y.M. Wan, M.H. Ellisman, C. Sütterlin, M. Tan Replication-dependent size reduction precedes differentiation in chlamydia trachomatis Nat. Commun. 2018 3884 3891

[5]

[6] M. Kimmel and D.E. Axelrod, Branching processes in biology, Vol. 19 of Interdisciplinary Applied Mathematics, 2nd edn. Springer, New York (2015).

[7] A. Bogdanov, P. Kevei, M. Szalai, D. Virok Stochastic modeling of in vitro bactericidal potency Bull. Math. Biol. 2022 18

[8] O. Hernández-Lerma and J.B. Lasserre, Discrete-time Markov control processes. Vol. 30 of Applications of Mathematics (New York). Springer-Verlag, New York (1996).

[9] M. Kimmel, Quasistationarity in a branching model of division-within-division, in Classical and Modern Branching Processes (Minneapolis, MN, 1994). Vol. 84 of IMA Vol. Math. Appl.. Springer, New York (1997) 157–164.

[10] A. Marguet, C. Smadi Spread of parasites affecting death and division rates in a cell population Stochastic Process. Appl. 2024 31

[11] C. Elwell, K. Mirrashidi, J. Engel Chlamydia cell biology and pathogenesis Nat. Rev. Microbiol. 2016 385 400

Cité par Sources :