Astrid Decoene 1 ; Sébastien Martin 2 ; Chabane Méziane 3
@article{10_1051_mmnp_2024010,
author = {Astrid Decoene and S\'ebastien Martin and Chabane M\'eziane},
title = {3D {Simulation} of {Active} thin {Structures} in a {Viscous} {Fluid} and {Application} to {Mucociliary} {Transport}},
journal = {Mathematical modelling of natural phenomena},
eid = {12},
year = {2024},
volume = {19},
doi = {10.1051/mmnp/2024010},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024010/}
}
TY - JOUR AU - Astrid Decoene AU - Sébastien Martin AU - Chabane Méziane TI - 3D Simulation of Active thin Structures in a Viscous Fluid and Application to Mucociliary Transport JO - Mathematical modelling of natural phenomena PY - 2024 VL - 19 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024010/ DO - 10.1051/mmnp/2024010 LA - en ID - 10_1051_mmnp_2024010 ER -
%0 Journal Article %A Astrid Decoene %A Sébastien Martin %A Chabane Méziane %T 3D Simulation of Active thin Structures in a Viscous Fluid and Application to Mucociliary Transport %J Mathematical modelling of natural phenomena %D 2024 %V 19 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024010/ %R 10.1051/mmnp/2024010 %G en %F 10_1051_mmnp_2024010
Astrid Decoene; Sébastien Martin; Chabane Méziane. 3D Simulation of Active thin Structures in a Viscous Fluid and Application to Mucociliary Transport. Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 12. doi: 10.1051/mmnp/2024010
[1] , , , Micro- and macrorheology of mucus Adv. Drug Deliv. Rev. 2009 86 100
[2] , Mucus clearance as a primary innate defense mechanism for mammalian airways J. Clin. Invest. 2002 571 577
[3] , , The mechanism of mucus clearance in cough Trans. ASME, J. Biomech. Eng. 1989 288 297
[4] , Principles underlying ciliary activity in the respiratory tract: II. A comparison of nasal clearance in man, monkey and other mammals Arch. Otolaryngol. 1934 518 541
[5] Cilia and flagella of eukaryotes J. Cell. Biol. 1981 107 124
[6] D.R. Mitchell, The Evolution of Eukaryotic Cilia and Flagella as Motile and Sensory Organelles. Eukaryotic Membranes and Cytoskeleton: Origins and Evolution. Advances in Experimental Medicine and Biology, Vol. 607. Springer New York (2007) 130–140, chapter 11.
[7] , , , Structural studies of ciliary components J. Mol. Biol. 2012 163 180
[8] , , Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery FEBS J. 2017 2905 2931
[9] Life at low Reynolds number Am. J. Phys. 1977 3 11
[10] , A versatile and quantitative computer-assisted photoelectronic technique used for the analysis of ciliary beat cycles Cell Motil. 1985 267 292
[11] , , , Flagellar synchronization through direct hydrodynamic interactions eLife 2014 e02750
[12] , , , Mucus dynamics subject to air and wall motion ESAIM: Proc. 2010 125 141
[13] Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment J. Comput. Phys. 2013 193 211
[14] , , , , Toward the modeling of mucus draining from the human lung: role of the geometry of the airway tree Phys. Biol. 2011 056006
[15] , , A viscoelastic traction layer model of muco-ciliary transport Bull. Math. Biol. 2007 289 327
[16] , , , , , , Model of mucociliary clearance in cystic fibrosis lungs J. Theor. Biol. 2015 81 88
[17] , , , , On the role of viscoelasticity in mucociliary clearance: a hydrodynamic continuum approach J. Fluid Mech. 2023 A33
[18] , , , , , , A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part II, modeling PLOS Comput. Biol. 2017 1 21
[19] A. Decoene, S. Martin and F. Vergnet, A continuum active structure model for the interaction of cilia with a viscous fluid. Z. Angew. Math. Mech. (2023) e202100534
[20] , , , Fluid dynamic models of flagellar and ciliary beating Ann. N. Y. Acad. Sci. 2007 494 505
[21] , A three-dimensional model for ciliary motion based on the internal 9 + 2 structure Proc. Biol. Sci. 2001 599 607
[22] , Ciliary motion modeling, and dynamic multicilia interactions Biophys. J. 1992 1045 1058
[23] , Simulations of three-dimensional ciliary beats and cilia interactions Biophys. J. 1993 499 507
[24] , , , Effect of cilia beat frequency on muco-ciliary clearance J. Biomed. Phys. Eng. 2016 265 278
[25] , , Three-dimensional simulation of mucociliary clearance under the ciliary abnormalities J. Non-Newton. Fluid Mech. 2023 105029
[26] Metachronal wave formation in a model of pulmonary cilia Comput. Struct. 2007 763 774
[27] , , Nonlinear amplitude dynamics in flagellar beating R. Soc. Open Sci. 2017 160698
[28] , , Cilia oscillations Philos. Trans. R. Soc. B 2019 20190157
[29] , Hydrodynamic synchronization of spontaneously beating filaments Phys. Rev. Lett. 2019 208101
[30] , , A multiscale biophysical model gives quantized metachronal waves in a lattice of beating cilia Proc. Natl. Acad. Sci. U.S.A. 2022 e2113539119
[31] The motion of long slender bodies in a viscous fluid. Part 1. General theory J. Fluid Mech. 1970 791 810
[32] , , Theoretical justification and error analysis for slender body theory Commun. Pure Appl. Math. 2020 1245 1314
[33] , The discrete-cilia approach to propulsion of ciliated micro-organisms J. Fluid Mech. 1976 593 607
[34] , Force distribution along a slender body straddling an interface J. Austral. Math. Soc. Ser. B 1986 295 315
[35] , , Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid Bull. Math. Biol. 2007 1477 1510
[36] , , , , , Muco-ciliary transport: effect of mucus viscosity, cilia beat frequency and cilia density Comput. Fluids 2011 214 221
[37] , , , Transport efficiency of metachronal waves in 3D cilium arrays immersed in a two-phase flow J. Fluid Mech. 2017 931 961
[38]
[39] , Dynamics of thin free films with reaction-driven density and viscosity variations Phys. Fluids 2005 122102
[40] , , , Local error analysis for the Stokes equations with a punctual source term Numer. Math. 2018 677 701
[41] L. Lacouture, Modélisation et simulation du mouvement de structures fines dans un fluide visqueux : application au transport mucociliaire. Thèse de doctorat de l’université Paris-Sud (2016).
[42] , Muco-ciliary transport in the lung J. Theor. Biol. 1986 381 402
[43] , Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony J. Cell Sci. 1981 331 347
[44] , , Effect of viscosity on metachrony in mucus propelling cilia Cell Motil. Cytoskel. 1998 9 20
[45] Representation theorems in reflexive Banach spaces Math. Z. 1968 405 406
[46] C.G. Simader, On Dirichlet’s Boundary value Problem. An Lp-theory based on a generalization of Garding’s inequality. Vol. 268 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-Heidelberg-New York (1972).
[47] J. Numer. Math. 2012 251 265
[48] , , Measurement of tracheal and bronchial mucus velocities in man: relation to lung clearance J. Appl. Physiol. 1980 965 971
[49] , , , Mucociliary function deteriorates in the clinical range of inspired air temperature and humidity Intensive Care Med. 2004 1491 1494
[50] , , , , Mucociliary tracheal transport rates in man J. Appl. Physiol. 1975 487 495
[51] , , , Tracheal mucus velocity remains normal in healthy sheep intubated with a new endotracheal tube with a novel laryngeal seal Anesthesiology 1997 1140 1144
[52] , , , , , , Scintigraphic measurement of tracheal mucus velocity in vivo Eur. Respir. J. 2004 518 522
[53] , , Direct simulation of rigid particles in a viscoelastic fluid J. Non-Newton. Fluid Mech. 2018 1 25
Cité par Sources :