Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2024_19_a5, author = {Salih Djilali}, title = {Generalities on a {Delayed} {Spatiotemporal} {Host{\textendash}Pathogen} {Infection} {Model} with {Distinct} {Dispersal} {Rates}}, journal = {Mathematical modelling of natural phenomena}, eid = {11}, publisher = {mathdoc}, volume = {19}, year = {2024}, doi = {10.1051/mmnp/2024008}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024008/} }
TY - JOUR AU - Salih Djilali TI - Generalities on a Delayed Spatiotemporal Host–Pathogen Infection Model with Distinct Dispersal Rates JO - Mathematical modelling of natural phenomena PY - 2024 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024008/ DO - 10.1051/mmnp/2024008 LA - en ID - MMNP_2024_19_a5 ER -
%0 Journal Article %A Salih Djilali %T Generalities on a Delayed Spatiotemporal Host–Pathogen Infection Model with Distinct Dispersal Rates %J Mathematical modelling of natural phenomena %D 2024 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024008/ %R 10.1051/mmnp/2024008 %G en %F MMNP_2024_19_a5
Salih Djilali. Generalities on a Delayed Spatiotemporal Host–Pathogen Infection Model with Distinct Dispersal Rates. Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 11. doi : 10.1051/mmnp/2024008. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024008/
[1] Viral diffusion and cell-to-cell transmission: mathematical analysis and simulation study J. Math. Pures Appl. 2020 290 313
, , ,[2] Dynamics of a PDE viral infection model incorporating cell-to-cell transmission J. Math. Anal. Appl. 2016 1542 1564
, ,[3] Global threshold analysis on a diffusive host–pathogen model with hyperinfectivity and nonlinear incidence functions Math. Comput. Simul. 2023 767 802
, ,[4] J. Wang and X. Wu, Dynamics and profiles of a diffusive cholera model with bacterial hyperinfectivity and distinct dispersal rates. J. Dynam. Diff. Equat. (2021) 1–37.
[5] Dynamics of a host–pathogen system on a bounded spatial domain Commun. Pure Appl. Anal. 2015 2535
, ,[6] S. Bentout, Analysis of global behavior in an age-structured epidemic model with nonlocal dispersal and distributed delay. Math. Meth. Appl. Sci. (2024) 1–24.
[7] Dynamics of a diffusion dispersal viral epidemic modelwith age infection in a spatially heterogeneous environment with general nonlinear function Math. Meth. Appl. Sci. 2023 14983 15010
,[8] R.D. Nussbaum, Eigenvectors of nonlinear positive operators and the linear Krein–Rutman theorem. Fixed Point Theory. Springer, Berlin, Heidelberg (1981) 309–330.
[9] K. Deimling, Nonlinear Functional Analysis. Springer, Berlin (1988).
[10] Global dynamics of a PDE in-host viral model Applic. Anal. 2014 2312 2329
, ,[11] Dynamics and profiles of a diffusive host–pathogen system with distinct dispersal rates J. Diff. Equat. 2018 4989 5024
,[12] J.K. Hale, Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographsvol, Vol. 25. American Mathematical Society, Providence, RI (1988).
[13] X.Q. Zhao, Dynamical Systems in Population Biology, Vol. 16. Springer, New York (2017).
[14] S. Djilali, Threshold asymptotic dynamics for a spatial age-dependent cell-to-cell transmission model with nonlocal disperse. Discrete Continuous Dyn. Syst. Ser. B 28 (2023).
[15] Stability characterization of a fractional-order viral system with the non- cytolytic immune assumption Math. Model. Numer. Simul. Applic. 2022 164 176
, ,[16] Global analysis of a fractional-order viral model with lytic and non-lytic adaptive immunity Model. Earth Syst. Environ. 2023 1749 1769
, , , ,[17] Dynamics of a diffusive delayed viral infection model in a heterogeneous environment Math. Methods Appl. Sci. 2023 16596 16624
, ,[18] Dynamics of spatially heterogeneous viral model with time delay Commun. Pure Appl. Anal. 2020 85
,[19] Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin Dyn. Syst. 2008 1 20
, , ,[20] Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism J. Diff. Equat. 2016 4424 4447
,[21] G.F. Webb, Theory of Nonlinear Age-dependent Population Dynamics. CRC Press (1985).
[22] H.L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society. Providence (1995).
[23] Basic reproduction numbers for reaction–diffusion epidemic models SIAM J. Appl. Dyn. Syst. 2012 1652 1673
,[24] N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. (1983).
[25] Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity SIAM J. Appl. Math. 2009 188 211
[26] Asymptotic behavior of one-parameter semigroups of positive operators Acta Appl. Math. 1984 297 309
,[27] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1983).
[28] W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, in Differential Equations in Banach Spaces, Lecture Notes in Math. 1223, edited by A. Favini and E. Obrecht. Springer-Verlag, Berlin, Heidelberg (1986) 61–67.
[29] Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments J. Diff. Equat. 2017 2343 2373
, ,[30] Global attractors and steady states for uniformly persistent dynamical systems SIAM J. Math. Anal. 2005 251 275
,[31] Robust persistence for semidynamical systems Nonlin. Anal. Theo. Meth. Appl. 2001 6169 6179
,[32] Global dynamics of a spatial heterogeneous viral infection model with intracellular delay and nonlocal diffusion Appl. Math. Model. 2020 150 167
, ,[33] Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission Bull. Math. Biol. 2006 615 626
[34] Global analysis of an infection age model with a class of nonlinear incidence rates J. Math. Anal. Appl. 2016 1211 1239
,[35] D. Henry, Geometric theory of Semilinear Parabolic Equations, Vol. 840. Springer (2006).
Cité par Sources :