Generalities on a Delayed Spatiotemporal Host–Pathogen Infection Model with Distinct Dispersal Rates
Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 11.

Voir la notice de l'article provenant de la source EDP Sciences

We propose a general model to investigate the effect of the distinct dispersal coefficients infected and susceptible hosts in the pathogen dynamics. The mathematical challenge lies in the fact that the investigated model is partially degenerate and the solution map is not compact. The spatial heterogeneity of the model parameters and the distinct diffusion coefficients induce infection in the low-risk regions. In fact, as infection dispersal increases, the reproduction of the pathogen particles decreases. The dynamics of the investigated model is governed by the value of the basic reproduction number R0. If R0 ≤ 1, then the pathogen particles extinct, and for R0 > 1 the pathogen particles persist, and there is at least one positive steady state. The asymptotic profile of the positive steady state is shown in the case when one or both diffusion coefficients for the host tends to zero or infinity.
DOI : 10.1051/mmnp/2024008

Salih Djilali 1

1 Faculty of Exact Sciences and Informatics, Mathematic Department, Hassiba Benbouali University, 02000 Chlef, Algeria
@article{MMNP_2024_19_a5,
     author = {Salih Djilali},
     title = {Generalities on a {Delayed} {Spatiotemporal} {Host{\textendash}Pathogen} {Infection} {Model} with {Distinct} {Dispersal} {Rates}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {11},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     doi = {10.1051/mmnp/2024008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024008/}
}
TY  - JOUR
AU  - Salih Djilali
TI  - Generalities on a Delayed Spatiotemporal Host–Pathogen Infection Model with Distinct Dispersal Rates
JO  - Mathematical modelling of natural phenomena
PY  - 2024
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024008/
DO  - 10.1051/mmnp/2024008
LA  - en
ID  - MMNP_2024_19_a5
ER  - 
%0 Journal Article
%A Salih Djilali
%T Generalities on a Delayed Spatiotemporal Host–Pathogen Infection Model with Distinct Dispersal Rates
%J Mathematical modelling of natural phenomena
%D 2024
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024008/
%R 10.1051/mmnp/2024008
%G en
%F MMNP_2024_19_a5
Salih Djilali. Generalities on a Delayed Spatiotemporal Host–Pathogen Infection Model with Distinct Dispersal Rates. Mathematical modelling of natural phenomena, Tome 19 (2024), article  no. 11. doi : 10.1051/mmnp/2024008. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024008/

[1] H. Shu, Z. Ma, X.S. Wang, L. Wang Viral diffusion and cell-to-cell transmission: mathematical analysis and simulation study J. Math. Pures Appl. 2020 290 313

[2] J. Wang, J. Yang, T. Kuniya Dynamics of a PDE viral infection model incorporating cell-to-cell transmission J. Math. Anal. Appl. 2016 1542 1564

[3] J. Wang, W. Wu, T. Kuniya Global threshold analysis on a diffusive host–pathogen model with hyperinfectivity and nonlinear incidence functions Math. Comput. Simul. 2023 767 802

[4] J. Wang and X. Wu, Dynamics and profiles of a diffusive cholera model with bacterial hyperinfectivity and distinct dispersal rates. J. Dynam. Diff. Equat. (2021) 1–37.

[5] F.B. Wang, J. Shi, X. Zou Dynamics of a host–pathogen system on a bounded spatial domain Commun. Pure Appl. Anal. 2015 2535

[6] S. Bentout, Analysis of global behavior in an age-structured epidemic model with nonlocal dispersal and distributed delay. Math. Meth. Appl. Sci. (2024) 1–24.

[7] F. Mahroug, S. Bentout Dynamics of a diffusion dispersal viral epidemic modelwith age infection in a spatially heterogeneous environment with general nonlinear function Math. Meth. Appl. Sci. 2023 14983 15010

[8] R.D. Nussbaum, Eigenvectors of nonlinear positive operators and the linear Krein–Rutman theorem. Fixed Point Theory. Springer, Berlin, Heidelberg (1981) 309–330.

[9] K. Deimling, Nonlinear Functional Analysis. Springer, Berlin (1988).

[10] F.B. Wang, Y. Huang, X. Zou Global dynamics of a PDE in-host viral model Applic. Anal. 2014 2312 2329

[11] Y. Wu, X. Zou Dynamics and profiles of a diffusive host–pathogen system with distinct dispersal rates J. Diff. Equat. 2018 4989 5024

[12] J.K. Hale, Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographsvol, Vol. 25. American Mathematical Society, Providence, RI (1988).

[13] X.Q. Zhao, Dynamical Systems in Population Biology, Vol. 16. Springer, New York (2017).

[14] S. Djilali, Threshold asymptotic dynamics for a spatial age-dependent cell-to-cell transmission model with nonlocal disperse. Discrete Continuous Dyn. Syst. Ser. B 28 (2023).

[15] N. Mouhcine, Y. Sabbar, Z. Anwar Stability characterization of a fractional-order viral system with the non- cytolytic immune assumption Math. Model. Numer. Simul. Applic. 2022 164 176

[16] M. Naim, Z. Yaagoub, A. Zeb, M. Sadki, A. Karam Global analysis of a fractional-order viral model with lytic and non-lytic adaptive immunity Model. Earth Syst. Environ. 2023 1749 1769

[17] S. Djilali, S. Bentout, A. Zeb Dynamics of a diffusive delayed viral infection model in a heterogeneous environment Math. Methods Appl. Sci. 2023 16596 16624

[18] H. Yang, J. Wei Dynamics of spatially heterogeneous viral model with time delay Commun. Pure Appl. Anal. 2020 85

[19] L.J.S. Allen, B.M. Bolker, Y. Lou, A.L. Nevai Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin Dyn. Syst. 2008 1 20

[20] Y. Wu, X. Zou Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism J. Diff. Equat. 2016 4424 4447

[21] G.F. Webb, Theory of Nonlinear Age-dependent Population Dynamics. CRC Press (1985).

[22] H.L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society. Providence (1995).

[23] W. Wang, X. Zhao Basic reproduction numbers for reaction–diffusion epidemic models SIAM J. Appl. Dyn. Syst. 2012 1652 1673

[24] N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. (1983).

[25] H.R. Thieme Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity SIAM J. Appl. Math. 2009 188 211

[26] W. Kerscher, R. Nagel Asymptotic behavior of one-parameter semigroups of positive operators Acta Appl. Math. 1984 297 309

[27] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1983).

[28] W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, in Differential Equations in Banach Spaces, Lecture Notes in Math. 1223, edited by A. Favini and E. Obrecht. Springer-Verlag, Berlin, Heidelberg (1986) 61–67.

[29] R. Cui, K.Y. Lam, Y. Lou Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments J. Diff. Equat. 2017 2343 2373

[30] P. Magal, X.-Q. Zhao Global attractors and steady states for uniformly persistent dynamical systems SIAM J. Math. Anal. 2005 251 275

[31] H. Smith, X.Q. Zhao Robust persistence for semidynamical systems Nonlin. Anal. Theo. Meth. Appl. 2001 6169 6179

[32] L. Liu, R. Xu, Z. Jin Global dynamics of a spatial heterogeneous viral infection model with intracellular delay and nonlocal diffusion Appl. Math. Model. 2020 150 167

[33] A. Korobeinikov Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission Bull. Math. Biol. 2006 615 626

[34] B. Soufiane, T.M. Touaoula Global analysis of an infection age model with a class of nonlinear incidence rates J. Math. Anal. Appl. 2016 1211 1239

[35] D. Henry, Geometric theory of Semilinear Parabolic Equations, Vol. 840. Springer (2006).

Cité par Sources :