José Geiser Villavicencio-Pulido 1 ; Ignacio Barradas 2 ; Claudia Nila-Luévano 3
@article{10_1051_mmnp_2024006,
author = {Jos\'e Geiser Villavicencio-Pulido and Ignacio Barradas and Claudia Nila-Lu\'evano},
title = {Additive multiple contacts and saturation phenomena in epidemiological models are not detected by {R0}},
journal = {Mathematical modelling of natural phenomena},
eid = {8},
year = {2024},
volume = {19},
doi = {10.1051/mmnp/2024006},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024006/}
}
TY - JOUR AU - José Geiser Villavicencio-Pulido AU - Ignacio Barradas AU - Claudia Nila-Luévano TI - Additive multiple contacts and saturation phenomena in epidemiological models are not detected by R0 JO - Mathematical modelling of natural phenomena PY - 2024 VL - 19 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024006/ DO - 10.1051/mmnp/2024006 LA - en ID - 10_1051_mmnp_2024006 ER -
%0 Journal Article %A José Geiser Villavicencio-Pulido %A Ignacio Barradas %A Claudia Nila-Luévano %T Additive multiple contacts and saturation phenomena in epidemiological models are not detected by R0 %J Mathematical modelling of natural phenomena %D 2024 %V 19 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024006/ %R 10.1051/mmnp/2024006 %G en %F 10_1051_mmnp_2024006
José Geiser Villavicencio-Pulido; Ignacio Barradas; Claudia Nila-Luévano. Additive multiple contacts and saturation phenomena in epidemiological models are not detected by R0. Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 8. doi: 10.1051/mmnp/2024006
[1] , , , Fundamental carcinogenic processes and their implications for low dose risk assessment Cancer Res. 1976 2973 2979
[2] Laboratory-associated infections and biosafety Clin. Microbiol. Rev. 1995 389 405
[3] , , Review of infective dose, routes of transmission and outcome of COVID-19 caused by the SARS-COV-2: comparison with other respiratory viruses Epidemiol. Infect. 2021 1 8
[4] S. Basu, Close-range exposure to a COVID-19 carrier: transmission trends in the respiratory tract and estimation of infectious dose. medRxiv (2020).
[5] , Minimum infective dose of the major human respiratory and enteric viruses transmitted through food and the environment Food Environ. Virol. 2011 1 30
[6] , , , , An upper bound on one-to-one exposure to infectious human respiratory particles PNAS 2021 e2110117118
[7] , , Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models J. Math. Biol. 1986 187 204
[8] , A simple SIS epidemic model with a backward bifurcation J. Math. Biol. 2000 525 540
[9] , Forces of infection allowing for backward bifurcation in an epidemic model with vaccination and treatment Acta Appl Math 2012 283 293
[10] , On the dynamics of an SEIR epidemic model with a convex incidence rate Ricerche mat. 2008 261 281
[11] , A generalization of the Kermack–McKendrick deterministic epidemic model Math. Biosci. 1978 41 61
[12] , , , , Influenza infectious dose may explain the high mortality of the second and third wave of 1918–1919 influenza pandemic PLos One 2010 e11655
[13] , A simple vaccination model with multiple endemic states Math. Biosci. 2000 183 201
[14] , , , , , , , , , , Detection of novel coronavirus by RT_PCR in stool specimen from asymptomatic child, China Emerg. Infect. Dis. 2020 1337 1339
[15] , , , , , , , , , , , , , Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China Sci. China Life Sci. 2020 706 711
[16] , , , , , Observation and analysis of 26 cases of asymptomatic SARS-COV2 infection J. Infect. 2020 e69 e70
[17] , , , , , Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020 Emerg. Infect. Dis. 2020 1343 1345
[18] , A mathematical model for the novel coronavirus epidemic in Wuhan, China Math. Biosci. Eng. 2020 2708 2724
[19] , , A SIRS model with a nonlinear incidence Chaos Solitons Fractals 2007 1482 1497
[20] P. van den Driessche and J. Watmough, Epidemic solutions and endemic catastrophies, in Dynamical Systems and Their Applications in Biology, Vol. 36. American Mathematical Society, Providence (2003) 247–257.
[21] , , On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol. 1990 365 382
[22] , Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Math. Biosci. 2002 29 48
[23] Ministry of Health, Mexico, http://datosabiertos.salud.gob.mx/gobmx/salud/datos_abiertos/datos_abiertos_covid19.zip.
[24] , A general purpose sampling algorithm for continuous distribution (the t-walk) Bayesian Anal. 2010 263 281
[25] A note on generation times in epidemic models Math. Biosci 2007 300 3011
[26] CONAPO, http://www.conapo.gob.mx/work/models/CONAPO/Mapa_Ind_Dem18/index_2.html.
[27] , , , , , , , , , Modelling the COVID-19 pandemic: focusing on the case of Greece Epidemics 2023 100706
[28] , , , Modeling the transmission dynamics and the impact of the control interventions for the COVID-19 epidemic outbreak Math. Biosci. Eng. 2020 4165 4183
[29] , , , , , , Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions J. Clin. Med. 2020 32046137
[30] , , Modeling behavioral change and COVID-19 containment in México: a trade-of between lockdown and compliance Math. Biosci. 2020 108370
[31] , , , Mathematical modeling and analysis of COVID-19 pandemic in Nigeria Math. Biosci. Eng. 2020 7192 7220
[32] , , , , , , , , Viral dynamics in mild and severe cases of COVID-19 Lancet 2020 656 657
[33] , , , , , , , , , , , , , , , SARS-CoV-2 viral load in upper respiratory specimens of infected patients N. Engl. J. Med. 2020 1177 1179
[34] , , , , Viral load of SARS-CoV-2 in samples Lancet 2020 411 412
[35] , , , Transmission of SARS-CoV-2: a review of viral, host, and environmental factors Ann. Intern. Med. 2020 69 79
[36] Superspreaders, asymptomatics and COVID-19 elimination Med. J. Aust. 2021 140 140.e1
[37] , , Transmission of SARS-CoV-2: unraveling Ro : considerations for public health applications Am. J. Public Health 2014 e32 e41
Cité par Sources :