(3+1)-Dimensional Gardner Equation Deformed from (1+1)-Dimensional Gardner Equation and its Conservation Laws
Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 9.

Voir la notice de l'article provenant de la source EDP Sciences

Through the application of the deformation algorithm, a novel (3+1)-dimensional Gardner equation and its associated Lax pair are derived from the (1+1)-dimensional Gardner equation and its conservation laws. As soon as the (3+1)-dimensional Gardner equation is set to be y or z independent, the Gardner equations in (2+1)-dimension are also obtained. To seek the exact solutions for these higher dimensional equations, the traveling wave method and the symmetry theory are introduced. Hence, the implicit expressions of traveling wave solutions to the (3+1)-dimensional and (2+1)-dimensional Gardner equations, the Lie point symmetry and the group invariant solutions to the (3+1)-dimensional Gardner equation are well investigated. In particular, after selecting some specific parameters, both the traveling wave solutions and the symmetry reduction solutions of hyperbolic function form are given.
DOI : 10.1051/mmnp/2024004

Guiming Jin 1 ; Xueping Cheng 2 ; Jianan Wang 1 ; Hailiang Zhang 1

1 School of Information Engineering, Zhejiang Ocean University, Zhoushan 316022, PR China
2 School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
@article{MMNP_2024_19_a17,
     author = {Guiming Jin and Xueping Cheng and Jianan Wang and Hailiang Zhang},
     title = {(3+1)-Dimensional {Gardner} {Equation} {Deformed} from {(1+1)-Dimensional} {Gardner} {Equation} and its {Conservation} {Laws}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {9},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     doi = {10.1051/mmnp/2024004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024004/}
}
TY  - JOUR
AU  - Guiming Jin
AU  - Xueping Cheng
AU  - Jianan Wang
AU  - Hailiang Zhang
TI  - (3+1)-Dimensional Gardner Equation Deformed from (1+1)-Dimensional Gardner Equation and its Conservation Laws
JO  - Mathematical modelling of natural phenomena
PY  - 2024
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024004/
DO  - 10.1051/mmnp/2024004
LA  - en
ID  - MMNP_2024_19_a17
ER  - 
%0 Journal Article
%A Guiming Jin
%A Xueping Cheng
%A Jianan Wang
%A Hailiang Zhang
%T (3+1)-Dimensional Gardner Equation Deformed from (1+1)-Dimensional Gardner Equation and its Conservation Laws
%J Mathematical modelling of natural phenomena
%D 2024
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024004/
%R 10.1051/mmnp/2024004
%G en
%F MMNP_2024_19_a17
Guiming Jin; Xueping Cheng; Jianan Wang; Hailiang Zhang. (3+1)-Dimensional Gardner Equation Deformed from (1+1)-Dimensional Gardner Equation and its Conservation Laws. Mathematical modelling of natural phenomena, Tome 19 (2024), article  no. 9. doi : 10.1051/mmnp/2024004. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024004/

[1] D.J. Kordeweg, G. De Vries On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves Philos. Mag. 1895 422

[2] R.M. Miura The Korteweg–de Vries equation: a survey of results SIAM Rev. 1976 412

[3] A. Hasegawa and Y. Kodama, Solitons in Optical Communications. Oxford University Press, Oxford (1995).

[4] G.P. Agrawal, Nonlinear Fiber Optics. Academic Press, San Diego, CA (2007).

[5] J. Rubinstein Sine-Gordon equation J. Math. Phys. 1970 258

[6] F. Baronio, S. Wabnitz, Y. Kodama Optical Kerr spatiotemporal dark-lump dynamics of hydrodynamic origin Phys. Rev. Lett. 2016 173901

[7] H. Riaz, A. Wajahat Multicomponent nonlinear Schrodinger equation in 2+1 dimensions, its Darboux transformation and soliton solutions Eur. Phys. J. Plus 2019 222

[8] B.G. Konopelchenko, C. Rogers On generalized Loewner systems: Novel integrable equations in 2+1 dimensions J. Math. Phys. 1993 214

[9] A.S. Fokas On the simplest integrable equation in 2+1 Inverse Probl. 1994 L19

[10] G.W. Wang, K.T. Yang, H.C. Gu, F. Guan, A.H. Kara A (2+1)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions Nucl. Phys. B 2020 114956

[11] H.C. Hu, X.D. Li Nonlocal symmetry and interaction solutions for the new (3+1)-dimensional integrable Boussinesq equation Math. Model. Nat. Phenom. 2022 2

[12] S.Y. Lou Deformations of the Riccati equation by using Miura-type transformations J. Phys. A 1997 7259

[13] S.Y. Lou Searching for higher dimensional integrable models from lower ones via Painlevé analysis Phys. Rev. Lett. 1998 5027

[14] A.S. Fokas Integrable nonlinear evolution partial differential equations in (4+2) and (3+1) dimensions Phys. Rev. Lett. 2006 190201

[15] S.Y. Lou, X.Z. Hao, M. Jia Deformation conjecture: deforming lower dimensional integrable systems to higher dimensional ones by using conservation laws J. High Energy Phys. 2023 018

[16] F.R. Wang, S.Y. Lou Lax integrable higher dimensional Burgers systems via a deformation algorithm and conservation laws Chaos Solitons Fract. 2023 113253

[17] M. Jia, S.Y. Lou A novel (2+1)-dimensional nonlinear Schördinger equation deformed from (1+1)-dimensional nonlinear Schrödinger equation Appl. Math. Lett. 2023 108684

[18] M. Casati, D.D. Zhang Multidimensional integrable deformations of integrable PDEs J. Phys. A: Math. Theor. 2023 505701

[19] G.H.F. Gardner, L.W. Gardner, A.R. Gregory Formation velocity and density – the diagnostic basics for stratigraphic traps Geophysics 1974 770

[20] R. Grimshaw, E. Pelinovsky, O. Poloukhina Higher-order Korteweg–de Vries models for internal solitary waves in a stratified shear flow with a free surface Nonlinear Process Geophys. 2002 221

[21] E.N. Pelinovskii, O.E. Polukhina, K. Lamb Nonlinear internal waves in the ocean stratified in density and current Oceanology 2000 757

[22] A. Karczewska, P. Rozmej (2+1)-dimensional KdV, fifth-order KdV, and Gardner equations derived from the ideal fluid model. Soliton, conidial and superposition solutions Commun. Nonlinear Sci. Numer. Simul. 2023 107317

[23] Z.Z. Li, J.F. Han, D.N. Gao, W.S. Duan Small amplitude double layers in an electronegative dusty plasma with distributed electrons Chin. Phys. B 2018 105204

[24] C.K. Kuo New solitary solutions of the Gardner equation and Whitham–Broer–Kaup equations by the modified simplest equation method Optik 2017 128

[25] J.X. Fei, W.P. Cao, Z.Y. Ma Nonlocal symmetries and explicit solutions for the Gardner equation Appl. Math. Comput. 2017 293

[26] H. Yepez-Martinez, M. Inc, H. Rezazadeh New analytical solutions by the application of the modified double sub-equation method to the (1+1)-Schamel-KdV equation, the Gardner equation and the Burgers equation Phys. Scr. 2022 085218

[27] K.J. Wang Traveling wave solutions of the Gardner equation in dusty plasmas Results Phys. 2022 105207

[28] G. Akram, S. Arshed, M. Sadaf Abundant solitary wave solutions of Gardner’s equation using three effective integration techniques AIMS Math. 2023 8171

Cité par Sources :