Voir la notice de l'article provenant de la source EDP Sciences
Guiming Jin 1 ; Xueping Cheng 2 ; Jianan Wang 1 ; Hailiang Zhang 1
@article{MMNP_2024_19_a17, author = {Guiming Jin and Xueping Cheng and Jianan Wang and Hailiang Zhang}, title = {(3+1)-Dimensional {Gardner} {Equation} {Deformed} from {(1+1)-Dimensional} {Gardner} {Equation} and its {Conservation} {Laws}}, journal = {Mathematical modelling of natural phenomena}, eid = {9}, publisher = {mathdoc}, volume = {19}, year = {2024}, doi = {10.1051/mmnp/2024004}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024004/} }
TY - JOUR AU - Guiming Jin AU - Xueping Cheng AU - Jianan Wang AU - Hailiang Zhang TI - (3+1)-Dimensional Gardner Equation Deformed from (1+1)-Dimensional Gardner Equation and its Conservation Laws JO - Mathematical modelling of natural phenomena PY - 2024 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024004/ DO - 10.1051/mmnp/2024004 LA - en ID - MMNP_2024_19_a17 ER -
%0 Journal Article %A Guiming Jin %A Xueping Cheng %A Jianan Wang %A Hailiang Zhang %T (3+1)-Dimensional Gardner Equation Deformed from (1+1)-Dimensional Gardner Equation and its Conservation Laws %J Mathematical modelling of natural phenomena %D 2024 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024004/ %R 10.1051/mmnp/2024004 %G en %F MMNP_2024_19_a17
Guiming Jin; Xueping Cheng; Jianan Wang; Hailiang Zhang. (3+1)-Dimensional Gardner Equation Deformed from (1+1)-Dimensional Gardner Equation and its Conservation Laws. Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 9. doi : 10.1051/mmnp/2024004. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024004/
[1] On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves Philos. Mag. 1895 422
,[2] The Korteweg–de Vries equation: a survey of results SIAM Rev. 1976 412
[3] A. Hasegawa and Y. Kodama, Solitons in Optical Communications. Oxford University Press, Oxford (1995).
[4] G.P. Agrawal, Nonlinear Fiber Optics. Academic Press, San Diego, CA (2007).
[5] Sine-Gordon equation J. Math. Phys. 1970 258
[6] Optical Kerr spatiotemporal dark-lump dynamics of hydrodynamic origin Phys. Rev. Lett. 2016 173901
, ,[7] Multicomponent nonlinear Schrodinger equation in 2+1 dimensions, its Darboux transformation and soliton solutions Eur. Phys. J. Plus 2019 222
,[8] On generalized Loewner systems: Novel integrable equations in 2+1 dimensions J. Math. Phys. 1993 214
,[9] On the simplest integrable equation in 2+1 Inverse Probl. 1994 L19
[10] A (2+1)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions Nucl. Phys. B 2020 114956
, , , ,[11] Nonlocal symmetry and interaction solutions for the new (3+1)-dimensional integrable Boussinesq equation Math. Model. Nat. Phenom. 2022 2
,[12] Deformations of the Riccati equation by using Miura-type transformations J. Phys. A 1997 7259
[13] Searching for higher dimensional integrable models from lower ones via Painlevé analysis Phys. Rev. Lett. 1998 5027
[14] Integrable nonlinear evolution partial differential equations in (4+2) and (3+1) dimensions Phys. Rev. Lett. 2006 190201
[15] Deformation conjecture: deforming lower dimensional integrable systems to higher dimensional ones by using conservation laws J. High Energy Phys. 2023 018
, ,[16] Lax integrable higher dimensional Burgers systems via a deformation algorithm and conservation laws Chaos Solitons Fract. 2023 113253
,[17] A novel (2+1)-dimensional nonlinear Schördinger equation deformed from (1+1)-dimensional nonlinear Schrödinger equation Appl. Math. Lett. 2023 108684
,[18] Multidimensional integrable deformations of integrable PDEs J. Phys. A: Math. Theor. 2023 505701
,[19] Formation velocity and density – the diagnostic basics for stratigraphic traps Geophysics 1974 770
, ,[20] Higher-order Korteweg–de Vries models for internal solitary waves in a stratified shear flow with a free surface Nonlinear Process Geophys. 2002 221
, ,[21] Nonlinear internal waves in the ocean stratified in density and current Oceanology 2000 757
, ,[22] (2+1)-dimensional KdV, fifth-order KdV, and Gardner equations derived from the ideal fluid model. Soliton, conidial and superposition solutions Commun. Nonlinear Sci. Numer. Simul. 2023 107317
,[23] Small amplitude double layers in an electronegative dusty plasma with distributed electrons Chin. Phys. B 2018 105204
, , ,[24] New solitary solutions of the Gardner equation and Whitham–Broer–Kaup equations by the modified simplest equation method Optik 2017 128
[25] Nonlocal symmetries and explicit solutions for the Gardner equation Appl. Math. Comput. 2017 293
, ,[26] New analytical solutions by the application of the modified double sub-equation method to the (1+1)-Schamel-KdV equation, the Gardner equation and the Burgers equation Phys. Scr. 2022 085218
, ,[27] Traveling wave solutions of the Gardner equation in dusty plasmas Results Phys. 2022 105207
[28] Abundant solitary wave solutions of Gardner’s equation using three effective integration techniques AIMS Math. 2023 8171
, ,Cité par Sources :