Qian Zhang 1 ; Ming Liu 1 ; Xiaofeng Xu 2
@article{10_1051_mmnp_2024003,
author = {Qian Zhang and Ming Liu and Xiaofeng Xu},
title = {Global {Hopf} {Bifurcation} {Of} a {Delayed} {Diffusive} {Gause-Type} {Predator-Prey} {System} with the {Fear} {Effect} and {Holling} {Type} {III} {Functional} {Response}},
journal = {Mathematical modelling of natural phenomena},
eid = {5},
year = {2024},
volume = {19},
doi = {10.1051/mmnp/2024003},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024003/}
}
TY - JOUR AU - Qian Zhang AU - Ming Liu AU - Xiaofeng Xu TI - Global Hopf Bifurcation Of a Delayed Diffusive Gause-Type Predator-Prey System with the Fear Effect and Holling Type III Functional Response JO - Mathematical modelling of natural phenomena PY - 2024 VL - 19 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024003/ DO - 10.1051/mmnp/2024003 LA - en ID - 10_1051_mmnp_2024003 ER -
%0 Journal Article %A Qian Zhang %A Ming Liu %A Xiaofeng Xu %T Global Hopf Bifurcation Of a Delayed Diffusive Gause-Type Predator-Prey System with the Fear Effect and Holling Type III Functional Response %J Mathematical modelling of natural phenomena %D 2024 %V 19 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024003/ %R 10.1051/mmnp/2024003 %G en %F 10_1051_mmnp_2024003
Qian Zhang; Ming Liu; Xiaofeng Xu. Global Hopf Bifurcation Of a Delayed Diffusive Gause-Type Predator-Prey System with the Fear Effect and Holling Type III Functional Response. Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 5. doi: 10.1051/mmnp/2024003
[1] A.J. Lotka, Elements of Physical Biology. Williams and Wilkins, Princeton, NJ (1925).
[2] Variazioni e fluttuazioni del numero d’individui in specie animali conviventi Mem. Acad. Lincei. 1926 31 113
[3] G.F. Gause, The Struggle for Existence. Williams and Wilkins, Baltimore (1934).
[4] , , Further studies of interaction between predators and prey J. Anim. Ecol. 1936 1 18
[5] H.I. Freedman, Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York (1980).
[6] , Predator—prey models with non-analytical functional response Chaos Soliton. Fract. 2019 163 172
[7] , , Global analysis of a Holling type II predator—prey model with a constant prey refuge Nonlinear Dyn. 2014 635 647
[8] , Spatiotemporal patterns of a predator—prey system with an Allee effect and Holling type III functional response Int. J. Bifurcat. Chaos 2016 1650088
[9] , , Bifurcation analysis of a predator—prey system with generalised Holling type III functional response J. Dyn. Differ. Equ. 2008 535 571
[10] , Global analysis in a predator—prey system with nonmonotonic functional response SIAM J. Appl. Math. 2001 1445 1472
[11] Uniqueness of limit cycles of the predator—prey system with Beddington—DeAngelis functional response J. Math. Anal. Appl. 2004 113 122
[12] , , Permanence and periodicity of a delayed ratio-dependent predator—prey model with Holling type functional response and stage structure J. Comput. Appl. Math. 2009 173 187
[13] , , Global stability and sliding bifurcations of a non-smooth Gause predator—prey system Appl. Math. Comput. 2013 9 20
[14] , A qualitative study on general Gause-type predator—prey models with constant diffusion rates J. Math. Anal. Appl. 2008 217 230
[15] , Permanence and periodic solutions for a diffusive ratio-dependent predator—prey system Appl. Math. Model. 2009 683 691
[16] , Bifurcation analysis of a diffusive predator—prey system with a herd behavior and quadratic mortality Math. Method. Appl. Sci. 2015 2994 3006
[17] , , Spatial dynamics in a predator—prey model with herd behavior Chaos 2013 003102
[18] , Emergent impacts of quadratic mortality on pattern formation in a predator—prey system Nonlinear Dyn. 2017 2715 2734
[19] , , Invasive dynamics for a predator—prey system with Allee effect in both populations and a special emphasis on predator mortality Chaos 2021 033150
[20] , Convergence results in a well-known delayed predator—prey system J. Math. Anal. Appl. 1996 840 853
[21] On nonlinear dynamics of predator—prey models with discrete delay Math. Model. Nat. Phenom. 2009 140 188
[22] , , , The effects of harvesting and time delay on predator—prey systems with holling type II functional response SIAM J. Appl. Math. 2009 1178 1200
[23] , , The effect of delay on a diffusive predator—prey system with Holling type-II predator functional response Commun. Pur. Appl. Anal. 2012 481 501
[24] , Stability and Hopf bifurcation of a delayed-diffusive predator—prey model with hyperbolic mortality and nonlinear prey harvesting Nonlinear Dyn. 2017 1397 1412
[25] Predation in bird populations J. Ornithol. 2011 251 263
[26] , The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations PLoS One 2008 e2465
[27] , Wolves and the ecology of fear: can predation risk structure ecosystems Bioscience 2004 755 766
[28] , , , Perceived predation risk reduces the number of offspring songbirds produce per year Science 2011 1398 1401
[29] , , , Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance Behav. Ecol. 2014 509 519
[30] , , Modelling the fear effect in predator—prey interactions J. Math. Biol. 2016 1179 1204
[31] , Modeling the effect of fear in a prey—predator system with prey refuge and gestation delay Int. J. Bifurcat. Chaos 2019 1950195
[32] , , Comparative studies on a predator—prey model subjected to fear and Allee effect with type I and type II foraging J. Appl. Math. Comput. 2020 93 118
[33] , Influence of the fear factor on the dynamics of a stochastic predator—prey model Appl. Math. Lett. 2021 106756
[34] J.H. Wu, Theory and Applications of Partial Functional Differential Equations. Springer-Verlag, New York (1996).
[35] , Local Hopf bifurcation and global periodic solutions in a delayed predator—prey system J. Math. Anal. Appl. 2005 1 21
[36] , , , Global qualitative analysis for a predator—prey system with delay Chaos Soliton. Fract. 2007 1582 1596
[37] , Bifurcation and global periodic solutions in a delayed facultative mutualism system Physica D 2007 51 69
[38] , , , A delayed predator—prey model with strong Allee effect in prey population growth Nonlinear Dyn. 2012 23 42
[39] , , Hopf bifurcation in a diffusive Logistic equation with mixed delayed and instantaneous density dependence J. Dyn. Differ. Equ. 2012 897 925
[40] , Bifurcation analysis of a spruce budworm model with diffusion and physiological structures J. Differ. Equ. 2017 5206 5230
[41] , Global Hopf bifurcation of a general predator—prey system with diffusion and stage structures J. Differ. Equ. 2020 8370 8386
[42] , , Global Hopf bifurcation in a phytoplankton-zooplankton system with delay and diffusion Int. J. Bifurcat. Chaos 2021 2150114
[43] A survey of constructing Lyapunov functions for mathmatical models in population biology Taiwan. J. Math. 2005 151 173
[44] Normal forms and Hopf bifurcation for partial differential equations with delays Trans. Am,. Math. Soc. 2000 2217 2238
Cité par Sources :