Voir la notice de l'article provenant de la source EDP Sciences
Qian Zhang 1 ; Ming Liu 1 ; Xiaofeng Xu 2
@article{MMNP_2024_19_a2, author = {Qian Zhang and Ming Liu and Xiaofeng Xu}, title = {Global {Hopf} {Bifurcation} {Of} a {Delayed} {Diffusive} {Gause-Type} {Predator-Prey} {System} with the {Fear} {Effect} and {Holling} {Type} {III} {Functional} {Response}}, journal = {Mathematical modelling of natural phenomena}, eid = {5}, publisher = {mathdoc}, volume = {19}, year = {2024}, doi = {10.1051/mmnp/2024003}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024003/} }
TY - JOUR AU - Qian Zhang AU - Ming Liu AU - Xiaofeng Xu TI - Global Hopf Bifurcation Of a Delayed Diffusive Gause-Type Predator-Prey System with the Fear Effect and Holling Type III Functional Response JO - Mathematical modelling of natural phenomena PY - 2024 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024003/ DO - 10.1051/mmnp/2024003 LA - en ID - MMNP_2024_19_a2 ER -
%0 Journal Article %A Qian Zhang %A Ming Liu %A Xiaofeng Xu %T Global Hopf Bifurcation Of a Delayed Diffusive Gause-Type Predator-Prey System with the Fear Effect and Holling Type III Functional Response %J Mathematical modelling of natural phenomena %D 2024 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024003/ %R 10.1051/mmnp/2024003 %G en %F MMNP_2024_19_a2
Qian Zhang; Ming Liu; Xiaofeng Xu. Global Hopf Bifurcation Of a Delayed Diffusive Gause-Type Predator-Prey System with the Fear Effect and Holling Type III Functional Response. Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 5. doi : 10.1051/mmnp/2024003. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024003/
[1] A.J. Lotka, Elements of Physical Biology. Williams and Wilkins, Princeton, NJ (1925).
[2] Variazioni e fluttuazioni del numero d’individui in specie animali conviventi Mem. Acad. Lincei. 1926 31 113
[3] G.F. Gause, The Struggle for Existence. Williams and Wilkins, Baltimore (1934).
[4] Further studies of interaction between predators and prey J. Anim. Ecol. 1936 1 18
, ,[5] H.I. Freedman, Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York (1980).
[6] Predator—prey models with non-analytical functional response Chaos Soliton. Fract. 2019 163 172
,[7] Global analysis of a Holling type II predator—prey model with a constant prey refuge Nonlinear Dyn. 2014 635 647
, ,[8] Spatiotemporal patterns of a predator—prey system with an Allee effect and Holling type III functional response Int. J. Bifurcat. Chaos 2016 1650088
,[9] Bifurcation analysis of a predator—prey system with generalised Holling type III functional response J. Dyn. Differ. Equ. 2008 535 571
, ,[10] Global analysis in a predator—prey system with nonmonotonic functional response SIAM J. Appl. Math. 2001 1445 1472
,[11] Uniqueness of limit cycles of the predator—prey system with Beddington—DeAngelis functional response J. Math. Anal. Appl. 2004 113 122
[12] Permanence and periodicity of a delayed ratio-dependent predator—prey model with Holling type functional response and stage structure J. Comput. Appl. Math. 2009 173 187
, ,[13] Global stability and sliding bifurcations of a non-smooth Gause predator—prey system Appl. Math. Comput. 2013 9 20
, ,[14] A qualitative study on general Gause-type predator—prey models with constant diffusion rates J. Math. Anal. Appl. 2008 217 230
,[15] Permanence and periodic solutions for a diffusive ratio-dependent predator—prey system Appl. Math. Model. 2009 683 691
,[16] Bifurcation analysis of a diffusive predator—prey system with a herd behavior and quadratic mortality Math. Method. Appl. Sci. 2015 2994 3006
,[17] Spatial dynamics in a predator—prey model with herd behavior Chaos 2013 003102
, ,[18] Emergent impacts of quadratic mortality on pattern formation in a predator—prey system Nonlinear Dyn. 2017 2715 2734
,[19] Invasive dynamics for a predator—prey system with Allee effect in both populations and a special emphasis on predator mortality Chaos 2021 033150
, ,[20] Convergence results in a well-known delayed predator—prey system J. Math. Anal. Appl. 1996 840 853
,[21] On nonlinear dynamics of predator—prey models with discrete delay Math. Model. Nat. Phenom. 2009 140 188
[22] The effects of harvesting and time delay on predator—prey systems with holling type II functional response SIAM J. Appl. Math. 2009 1178 1200
, , ,[23] The effect of delay on a diffusive predator—prey system with Holling type-II predator functional response Commun. Pur. Appl. Anal. 2012 481 501
, ,[24] Stability and Hopf bifurcation of a delayed-diffusive predator—prey model with hyperbolic mortality and nonlinear prey harvesting Nonlinear Dyn. 2017 1397 1412
,[25] Predation in bird populations J. Ornithol. 2011 251 263
[26] The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations PLoS One 2008 e2465
,[27] Wolves and the ecology of fear: can predation risk structure ecosystems Bioscience 2004 755 766
,[28] Perceived predation risk reduces the number of offspring songbirds produce per year Science 2011 1398 1401
, , ,[29] Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance Behav. Ecol. 2014 509 519
, , ,[30] Modelling the fear effect in predator—prey interactions J. Math. Biol. 2016 1179 1204
, ,[31] Modeling the effect of fear in a prey—predator system with prey refuge and gestation delay Int. J. Bifurcat. Chaos 2019 1950195
,[32] Comparative studies on a predator—prey model subjected to fear and Allee effect with type I and type II foraging J. Appl. Math. Comput. 2020 93 118
, ,[33] Influence of the fear factor on the dynamics of a stochastic predator—prey model Appl. Math. Lett. 2021 106756
,[34] J.H. Wu, Theory and Applications of Partial Functional Differential Equations. Springer-Verlag, New York (1996).
[35] Local Hopf bifurcation and global periodic solutions in a delayed predator—prey system J. Math. Anal. Appl. 2005 1 21
,[36] Global qualitative analysis for a predator—prey system with delay Chaos Soliton. Fract. 2007 1582 1596
, , ,[37] Bifurcation and global periodic solutions in a delayed facultative mutualism system Physica D 2007 51 69
,[38] A delayed predator—prey model with strong Allee effect in prey population growth Nonlinear Dyn. 2012 23 42
, , ,[39] Hopf bifurcation in a diffusive Logistic equation with mixed delayed and instantaneous density dependence J. Dyn. Differ. Equ. 2012 897 925
, ,[40] Bifurcation analysis of a spruce budworm model with diffusion and physiological structures J. Differ. Equ. 2017 5206 5230
,[41] Global Hopf bifurcation of a general predator—prey system with diffusion and stage structures J. Differ. Equ. 2020 8370 8386
,[42] Global Hopf bifurcation in a phytoplankton-zooplankton system with delay and diffusion Int. J. Bifurcat. Chaos 2021 2150114
, ,[43] A survey of constructing Lyapunov functions for mathmatical models in population biology Taiwan. J. Math. 2005 151 173
[44] Normal forms and Hopf bifurcation for partial differential equations with delays Trans. Am,. Math. Soc. 2000 2217 2238
Cité par Sources :