Global Hopf Bifurcation Of a Delayed Diffusive Gause-Type Predator-Prey System with the Fear Effect and Holling Type III Functional Response
Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 5.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, a delayed diffusive predator-prey system with the fear effect and Holling type III functional response is considered, and Neumann boundary condition is imposed on this system. First, we explore the stability of the unique positive constant steady state and the existence of local Hopf bifurcation. Then the global attraction domain G* of system (1.4) is obtained by the comparison principle and the iterative method. Through constructing the Lyapunov function, we investigate uniform boundedness of periodic solutions' periods. Finally, we prove the global continuation of periodic solutions by the global Hopf bifurcation theorem of Wu. Moreover, some numerical simulations that support the analysis results are given.
DOI : 10.1051/mmnp/2024003

Qian Zhang 1 ; Ming Liu 1 ; Xiaofeng Xu 2

1 Department of Mathematics, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
2 Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Mathematical Science, Heilongjiang University, Harbin 150080, PR China
@article{MMNP_2024_19_a2,
     author = {Qian Zhang and Ming Liu and Xiaofeng Xu},
     title = {Global {Hopf} {Bifurcation} {Of} a {Delayed} {Diffusive} {Gause-Type} {Predator-Prey} {System} with the {Fear} {Effect} and {Holling} {Type} {III} {Functional} {Response}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {5},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     doi = {10.1051/mmnp/2024003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024003/}
}
TY  - JOUR
AU  - Qian Zhang
AU  - Ming Liu
AU  - Xiaofeng Xu
TI  - Global Hopf Bifurcation Of a Delayed Diffusive Gause-Type Predator-Prey System with the Fear Effect and Holling Type III Functional Response
JO  - Mathematical modelling of natural phenomena
PY  - 2024
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024003/
DO  - 10.1051/mmnp/2024003
LA  - en
ID  - MMNP_2024_19_a2
ER  - 
%0 Journal Article
%A Qian Zhang
%A Ming Liu
%A Xiaofeng Xu
%T Global Hopf Bifurcation Of a Delayed Diffusive Gause-Type Predator-Prey System with the Fear Effect and Holling Type III Functional Response
%J Mathematical modelling of natural phenomena
%D 2024
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024003/
%R 10.1051/mmnp/2024003
%G en
%F MMNP_2024_19_a2
Qian Zhang; Ming Liu; Xiaofeng Xu. Global Hopf Bifurcation Of a Delayed Diffusive Gause-Type Predator-Prey System with the Fear Effect and Holling Type III Functional Response. Mathematical modelling of natural phenomena, Tome 19 (2024), article  no. 5. doi : 10.1051/mmnp/2024003. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024003/

[1] A.J. Lotka, Elements of Physical Biology. Williams and Wilkins, Princeton, NJ (1925).

[2] V. Volterra Variazioni e fluttuazioni del numero d’individui in specie animali conviventi Mem. Acad. Lincei. 1926 31 113

[3] G.F. Gause, The Struggle for Existence. Williams and Wilkins, Baltimore (1934).

[4] G.F. Gause, N.P. Smaragdova, A.A. Witt Further studies of interaction between predators and prey J. Anim. Ecol. 1936 1 18

[5] H.I. Freedman, Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York (1980).

[6] R.E. Kooij, A. Zegeling Predator—prey models with non-analytical functional response Chaos Soliton. Fract. 2019 163 172

[7] G.Y. Tang, S.Y. Tang, R.A. Cheke Global analysis of a Holling type II predator—prey model with a constant prey refuge Nonlinear Dyn. 2014 635 647

[8] Y.Y. Li, J.F. Wang Spatiotemporal patterns of a predator—prey system with an Allee effect and Holling type III functional response Int. J. Bifurcat. Chaos 2016 1650088

[9] Y. Lamontagne, C. Coutu, C. Rousseau Bifurcation analysis of a predator—prey system with generalised Holling type III functional response J. Dyn. Differ. Equ. 2008 535 571

[10] S.G. Ruan, D.M. Xiao Global analysis in a predator—prey system with nonmonotonic functional response SIAM J. Appl. Math. 2001 1445 1472

[11] T.W. Hwang Uniqueness of limit cycles of the predator—prey system with Beddington—DeAngelis functional response J. Math. Anal. Appl. 2004 113 122

[12] Z.X. Li, L.S. Chen, J.M. Huang Permanence and periodicity of a delayed ratio-dependent predator—prey model with Holling type functional response and stage structure J. Comput. Appl. Math. 2009 173 187

[13] J. Yang, S.Y. Tang, R.A. Cheke Global stability and sliding bifurcations of a non-smooth Gause predator—prey system Appl. Math. Comput. 2013 9 20

[14] W. Ko, K. Ryu A qualitative study on general Gause-type predator—prey models with constant diffusion rates J. Math. Anal. Appl. 2008 217 230

[15] X.X. Liu, L.H. Huang Permanence and periodic solutions for a diffusive ratio-dependent predator—prey system Appl. Math. Model. 2009 683 691

[16] Z. Xu, Y.L. Song Bifurcation analysis of a diffusive predator—prey system with a herd behavior and quadratic mortality Math. Method. Appl. Sci. 2015 2994 3006

[17] S.L. Yuan, C.Q. Xu, T.H. Zhang Spatial dynamics in a predator—prey model with herd behavior Chaos 2013 003102

[18] S. Ghorai, S. Poria Emergent impacts of quadratic mortality on pattern formation in a predator—prey system Nonlinear Dyn. 2017 2715 2734

[19] S. Rana, A.R. Bhowmick, T. Sardar Invasive dynamics for a predator—prey system with Allee effect in both populations and a special emphasis on predator mortality Chaos 2021 033150

[20] E. Beretta, Y. Kuang Convergence results in a well-known delayed predator—prey system J. Math. Anal. Appl. 1996 840 853

[21] S.G. Ruan On nonlinear dynamics of predator—prey models with discrete delay Math. Model. Nat. Phenom. 2009 140 188

[22] J. Xia, Z.H. Liu, R. Yuan, S.G. Ruan The effects of harvesting and time delay on predator—prey systems with holling type II functional response SIAM J. Appl. Math. 2009 1178 1200

[23] S.S. Chen, J.P. Shi, J.J. Wei The effect of delay on a diffusive predator—prey system with Holling type-II predator functional response Commun. Pur. Appl. Anal. 2012 481 501

[24] F.R. Zhang, Y. Li Stability and Hopf bifurcation of a delayed-diffusive predator—prey model with hyperbolic mortality and nonlinear prey harvesting Nonlinear Dyn. 2017 1397 1412

[25] W. Cresswell Predation in bird populations J. Ornithol. 2011 251 263

[26] E.L. Preisser, D.I. Bolnick The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations PLoS One 2008 e2465

[27] W.J. Ripple, R.L. Beschta Wolves and the ecology of fear: can predation risk structure ecosystems Bioscience 2004 755 766

[28] L.Y. Zanette, A.F. White, M.C. Allen, M. Clinchy Perceived predation risk reduces the number of offspring songbirds produce per year Science 2011 1398 1401

[29] F.Y. Hua, K.E. Sieving, R.J. Fletcher, C.A. Wright Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance Behav. Ecol. 2014 509 519

[30] X.Y. Wang, L. Zanette, X.F. Zou Modelling the fear effect in predator—prey interactions J. Math. Biol. 2016 1179 1204

[31] A. Kumar, B. Dubey Modeling the effect of fear in a prey—predator system with prey refuge and gestation delay Int. J. Bifurcat. Chaos 2019 1950195

[32] S. Halder, J. Bhattacharyya, S. Pal Comparative studies on a predator—prey model subjected to fear and Allee effect with type I and type II foraging J. Appl. Math. Comput. 2020 93 118

[33] Q. Liu, D.Q. Jiang Influence of the fear factor on the dynamics of a stochastic predator—prey model Appl. Math. Lett. 2021 106756

[34] J.H. Wu, Theory and Applications of Partial Functional Differential Equations. Springer-Verlag, New York (1996).

[35] Y.L. Song, J.J. Wei Local Hopf bifurcation and global periodic solutions in a delayed predator—prey system J. Math. Anal. Appl. 2005 1 21

[36] C.J. Sun, M.A. Han, Y.P. Lin, Y.Y. Chen Global qualitative analysis for a predator—prey system with delay Chaos Soliton. Fract. 2007 1582 1596

[37] X.P. Yan, W.T. Li Bifurcation and global periodic solutions in a delayed facultative mutualism system Physica D 2007 51 69

[38] P.J. Pal, T. Saha, M. Sen, M. Banerjee A delayed predator—prey model with strong Allee effect in prey population growth Nonlinear Dyn. 2012 23 42

[39] Y. Su, J.J. Wei, J.P. Shi Hopf bifurcation in a diffusive Logistic equation with mixed delayed and instantaneous density dependence J. Dyn. Differ. Equ. 2012 897 925

[40] X.F. Xu, J.J. Wei Bifurcation analysis of a spruce budworm model with diffusion and physiological structures J. Differ. Equ. 2017 5206 5230

[41] X.F. Xu, M. Liu Global Hopf bifurcation of a general predator—prey system with diffusion and stage structures J. Differ. Equ. 2020 8370 8386

[42] M. Liu, J. Cao, X.F. Xu Global Hopf bifurcation in a phytoplankton-zooplankton system with delay and diffusion Int. J. Bifurcat. Chaos 2021 2150114

[43] S.B. Hsu A survey of constructing Lyapunov functions for mathmatical models in population biology Taiwan. J. Math. 2005 151 173

[44] T. Faria Normal forms and Hopf bifurcation for partial differential equations with delays Trans. Am,. Math. Soc. 2000 2217 2238

Cité par Sources :