Voir la notice de l'article provenant de la source EDP Sciences
Mohamed Maama 1 ; Benjamin Ambrosio 2, 3 ; M.A. Aziz-Alaoui 2 ; Stanislav M. Mintchev 4
@article{MMNP_2024_19_a12, author = {Mohamed Maama and Benjamin Ambrosio and M.A. Aziz-Alaoui and Stanislav M. Mintchev}, title = {Emergent properties in a {V1-inspired} network of {Hodgkin{\textendash}Huxley} neurons}, journal = {Mathematical modelling of natural phenomena}, eid = {3}, publisher = {mathdoc}, volume = {19}, year = {2024}, doi = {10.1051/mmnp/2024001}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024001/} }
TY - JOUR AU - Mohamed Maama AU - Benjamin Ambrosio AU - M.A. Aziz-Alaoui AU - Stanislav M. Mintchev TI - Emergent properties in a V1-inspired network of Hodgkin–Huxley neurons JO - Mathematical modelling of natural phenomena PY - 2024 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024001/ DO - 10.1051/mmnp/2024001 LA - en ID - MMNP_2024_19_a12 ER -
%0 Journal Article %A Mohamed Maama %A Benjamin Ambrosio %A M.A. Aziz-Alaoui %A Stanislav M. Mintchev %T Emergent properties in a V1-inspired network of Hodgkin–Huxley neurons %J Mathematical modelling of natural phenomena %D 2024 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024001/ %R 10.1051/mmnp/2024001 %G en %F MMNP_2024_19_a12
Mohamed Maama; Benjamin Ambrosio; M.A. Aziz-Alaoui; Stanislav M. Mintchev. Emergent properties in a V1-inspired network of Hodgkin–Huxley neurons. Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 3. doi : 10.1051/mmnp/2024001. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024001/
[1] Synchronization and control of coupled reaction-diffusion systems of the FitzHugh–Nagumo type Comput. Math. Appl. 2012 934 943
,[2] Synchronization and Control of a network of coupled reaction-diffusion systems of generalized FitzHugh–Nagumo type ESAIM Proc. 2013 15 24
,[3] Basin of attraction of solutions with pattern formation in slow–fast reaction–diffusion systems Acta Biotheoretica 2013 311 325
,[4] Propagation of bursting oscillations in coupled non-homogeneous Hodgkin–Huxley reaction-diffusion systems Differ. Equ. Dyn. Syst. 2013 15 24
, ,[5] Large time behaviour and synchronization and control of a network of coupled reaction-diffusion systems of complex networks of reaction–diffusion systems of FitzHugh–Nagumo type IMA J. Appl. Math. 2019 416 443
, ,[6] Propagation of bursting oscillations Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 2009 4863 4875
,[7] B. Ambrosio and L-S. Young, The use of reduced models to generate irregular, broad-band signals that resemble brain rhythms Front. Computat. Neurosci. 16 (2022).
[8] M.A. Aziz-Alaoui, Synchronization of chaos, in Encyclopedia of Mathematical Physics. (2006) 213–226.
[9] Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition Neuron 2009 566 577
,[10] A multi-base harmonic balance method applied to Hodgkin–Huxley model Math. Biosci. Eng. 2018 807 825
, ,[11] A.-L. Barabasi, Network Science. Cambridge University Press (2016).
[12] A. Barrat, M. Barthelemy and A. Vespignani, Dynamical Processes on Complex Networks. Cambridge University Press (2008).
[13] Cluster synchronization in three-dimensional lattices of diffusively coupled oscillators Int. J. Bifurc. Chaos 2003 755 779
, , ,[14] Background gamma rhythmicity and attention in cortical local circuits: a computational study PNAS 2005 7002 7007
, , ,[15] C. Borgers, An Introduction to Modeling Neuronal Dynamics. Springer (2017).
[16] Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons J. Computat. Neurosci. 2000 183 208
[17] Emergent spike patterns in neuronal populations J. Computat. Neurosci. 2014 203 220
,[18] Orientation selectivity from very sparse LGN inputs in a comprehensive model of macaque V1 cortex J. Neurosci. 2018 12368 12384
, ,[19] Rhythm and synchrony in a cortical network model J. Neurosci. 2018 8621 8634
, ,[20] Complex networks: new trends for the analysis of brain connectivity Int. J. Bifurc. Chaos 2010 1 10
, , ,[21] J. Cronin, Mathematical Aspects of Hodgkin–Huxley Neural Theory. Cambridge University Press (1987).
[22] P. Dayan and L.F. Abott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press (2001).
[23] Canards, clusters and synchronization in a weakly coupled interneuron model SIADS 2019 253 278
, , ,[24] Fine structure of neural spiking and synchronization in the presence of conduction delays PNAS 1998 1259 1264
,[25] G.B. Ermentrout and D.H. Terman, Mathematical Foundations of Neuroscience. Springer, New York (2010).
[26] E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press (2006).
[27] Impulses and physiological states in theoretical models of nerve membrane Biophys. J. 1961 445 466
[28] W. Gerstner, W.M. Kistler, R. Naud, M. Richard and L. Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press (2014).
[29] A model of neuronal bursting using three coupled first order differential equations Proc. Roy. Soc. Lond. Ser. B 1984 87 102
,[30] A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 1952 500 544
,[31] E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience). The MIT Press (2006).
[32] E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A.J. Hudspeth and S. Mack, Principles of Neural Science. McGraw-Hill (2013).
[33] Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity J. Comput. Neurosci. 2012 559 572
, ,[34] Bifurcation of periodic solutions of the Hodgkin–Huxley model for the squid giant axon J. Theor. Biol. 1978 401 420
[35] Bifurcation of the Hodgkin and Huxley equations: a new twist Bull. Math. Biol. 1993 937 952
,[36] Chaos in the Hodgkin–Huxley Model SIAM J. Appl. Dyn. Syst. 2002 105 114
,[37] Voltage oscillations in the barnacle giant muscle fiber Biophys. J. 1981 193 213
,[38] An active pulse transmission line simulating nerve axon Biophys. J. 1962 2061 2070
, ,[39] M.E.J. Newman, Networks: An Introduction, Oxford University Press (2010).
[40] K.P. O’Keeffe, H. Hong and S.H. Strogatz, Oscillators that sync and swarm., Nat. Commun. 8 (2017).
[41] Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities Nat. Neurosci. 2008 535 537
,[42] Oscillators that sync and swarm Am. J. Phys. 2002 992 1000
[43] Cluster synchronization and isolated desynchronization in complex networks with symmetries Nat. Commun. 2014 4079
, , , ,[44] Emergent dynamics in a model of visual cortex J. Computat. Neurosci. 2013 155 167
,[45] Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations Math. Biosci. 1980 27 59
,[46] Turning on and off recurrent balanced cortical activity Nature 2003 288 293
, ,[47] S. Stogatz and I. Stewart, Coupled Oscillators and biological synchronization. Am. Sci. (1993) 68–75.
[48] Library-based numerical reduction of the Hodgkin–Huxley neuron for network simulation J. Computat. Neurosci. 2009 369 390
, , ,[49] Evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons J. Neurophysiol. 2004 630 643
, , ,[50] A branching dendritic model of a rodent CA3 pyramidal neuron J. Physiol. 1994 79 95
, , , ,[51] On the mechanism of the γ → β frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation J. Neurosci. 1999 1088 1105
, , , ,[52] Inhibition-based rhythms: experimental and mathematical observations on network dynamics Int. J. Psychophysiol. 2000 315 336
, , , ,[53] Excitatory and inhibitory interactions in localized populations of model neurons Biophys. J. 1972 1 24
,[54] Spatiotemporal dynamics of neuronal population response in the primary visual cortex PNAS 2013 9517 9522
, , ,Cité par Sources :