Mohamed Maama 1 ; Benjamin Ambrosio 2, 3 ; M.A. Aziz-Alaoui 2 ; Stanislav M. Mintchev 4
@article{10_1051_mmnp_2024001,
author = {Mohamed Maama and Benjamin Ambrosio and M.A. Aziz-Alaoui and Stanislav M. Mintchev},
title = {Emergent properties in a {V1-inspired} network of {Hodgkin{\textendash}Huxley} neurons},
journal = {Mathematical modelling of natural phenomena},
eid = {3},
year = {2024},
volume = {19},
doi = {10.1051/mmnp/2024001},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024001/}
}
TY - JOUR AU - Mohamed Maama AU - Benjamin Ambrosio AU - M.A. Aziz-Alaoui AU - Stanislav M. Mintchev TI - Emergent properties in a V1-inspired network of Hodgkin–Huxley neurons JO - Mathematical modelling of natural phenomena PY - 2024 VL - 19 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024001/ DO - 10.1051/mmnp/2024001 LA - en ID - 10_1051_mmnp_2024001 ER -
%0 Journal Article %A Mohamed Maama %A Benjamin Ambrosio %A M.A. Aziz-Alaoui %A Stanislav M. Mintchev %T Emergent properties in a V1-inspired network of Hodgkin–Huxley neurons %J Mathematical modelling of natural phenomena %D 2024 %V 19 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024001/ %R 10.1051/mmnp/2024001 %G en %F 10_1051_mmnp_2024001
Mohamed Maama; Benjamin Ambrosio; M.A. Aziz-Alaoui; Stanislav M. Mintchev. Emergent properties in a V1-inspired network of Hodgkin–Huxley neurons. Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 3. doi: 10.1051/mmnp/2024001
[1] , Synchronization and control of coupled reaction-diffusion systems of the FitzHugh–Nagumo type Comput. Math. Appl. 2012 934 943
[2] , Synchronization and Control of a network of coupled reaction-diffusion systems of generalized FitzHugh–Nagumo type ESAIM Proc. 2013 15 24
[3] , Basin of attraction of solutions with pattern formation in slow–fast reaction–diffusion systems Acta Biotheoretica 2013 311 325
[4] , , Propagation of bursting oscillations in coupled non-homogeneous Hodgkin–Huxley reaction-diffusion systems Differ. Equ. Dyn. Syst. 2013 15 24
[5] , , Large time behaviour and synchronization and control of a network of coupled reaction-diffusion systems of complex networks of reaction–diffusion systems of FitzHugh–Nagumo type IMA J. Appl. Math. 2019 416 443
[6] , Propagation of bursting oscillations Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 2009 4863 4875
[7] B. Ambrosio and L-S. Young, The use of reduced models to generate irregular, broad-band signals that resemble brain rhythms Front. Computat. Neurosci. 16 (2022).
[8] M.A. Aziz-Alaoui, Synchronization of chaos, in Encyclopedia of Mathematical Physics. (2006) 213–226.
[9] , Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition Neuron 2009 566 577
[10] , , A multi-base harmonic balance method applied to Hodgkin–Huxley model Math. Biosci. Eng. 2018 807 825
[11] A.-L. Barabasi, Network Science. Cambridge University Press (2016).
[12] A. Barrat, M. Barthelemy and A. Vespignani, Dynamical Processes on Complex Networks. Cambridge University Press (2008).
[13] , , , Cluster synchronization in three-dimensional lattices of diffusively coupled oscillators Int. J. Bifurc. Chaos 2003 755 779
[14] , , , Background gamma rhythmicity and attention in cortical local circuits: a computational study PNAS 2005 7002 7007
[15] C. Borgers, An Introduction to Modeling Neuronal Dynamics. Springer (2017).
[16] Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons J. Computat. Neurosci. 2000 183 208
[17] , Emergent spike patterns in neuronal populations J. Computat. Neurosci. 2014 203 220
[18] , , Orientation selectivity from very sparse LGN inputs in a comprehensive model of macaque V1 cortex J. Neurosci. 2018 12368 12384
[19] , , Rhythm and synchrony in a cortical network model J. Neurosci. 2018 8621 8634
[20] , , , Complex networks: new trends for the analysis of brain connectivity Int. J. Bifurc. Chaos 2010 1 10
[21] J. Cronin, Mathematical Aspects of Hodgkin–Huxley Neural Theory. Cambridge University Press (1987).
[22] P. Dayan and L.F. Abott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press (2001).
[23] , , , Canards, clusters and synchronization in a weakly coupled interneuron model SIADS 2019 253 278
[24] , Fine structure of neural spiking and synchronization in the presence of conduction delays PNAS 1998 1259 1264
[25] G.B. Ermentrout and D.H. Terman, Mathematical Foundations of Neuroscience. Springer, New York (2010).
[26] E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press (2006).
[27] Impulses and physiological states in theoretical models of nerve membrane Biophys. J. 1961 445 466
[28] W. Gerstner, W.M. Kistler, R. Naud, M. Richard and L. Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press (2014).
[29] , A model of neuronal bursting using three coupled first order differential equations Proc. Roy. Soc. Lond. Ser. B 1984 87 102
[30] , A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 1952 500 544
[31] E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience). The MIT Press (2006).
[32] E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A.J. Hudspeth and S. Mack, Principles of Neural Science. McGraw-Hill (2013).
[33] , , Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity J. Comput. Neurosci. 2012 559 572
[34] Bifurcation of periodic solutions of the Hodgkin–Huxley model for the squid giant axon J. Theor. Biol. 1978 401 420
[35] , Bifurcation of the Hodgkin and Huxley equations: a new twist Bull. Math. Biol. 1993 937 952
[36] , Chaos in the Hodgkin–Huxley Model SIAM J. Appl. Dyn. Syst. 2002 105 114
[37] , Voltage oscillations in the barnacle giant muscle fiber Biophys. J. 1981 193 213
[38] , , An active pulse transmission line simulating nerve axon Biophys. J. 1962 2061 2070
[39] M.E.J. Newman, Networks: An Introduction, Oxford University Press (2010).
[40] K.P. O’Keeffe, H. Hong and S.H. Strogatz, Oscillators that sync and swarm., Nat. Commun. 8 (2017).
[41] , Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities Nat. Neurosci. 2008 535 537
[42] Oscillators that sync and swarm Am. J. Phys. 2002 992 1000
[43] , , , , Cluster synchronization and isolated desynchronization in complex networks with symmetries Nat. Commun. 2014 4079
[44] , Emergent dynamics in a model of visual cortex J. Computat. Neurosci. 2013 155 167
[45] , Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations Math. Biosci. 1980 27 59
[46] , , Turning on and off recurrent balanced cortical activity Nature 2003 288 293
[47] S. Stogatz and I. Stewart, Coupled Oscillators and biological synchronization. Am. Sci. (1993) 68–75.
[48] , , , Library-based numerical reduction of the Hodgkin–Huxley neuron for network simulation J. Computat. Neurosci. 2009 369 390
[49] , , , Evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons J. Neurophysiol. 2004 630 643
[50] , , , , A branching dendritic model of a rodent CA3 pyramidal neuron J. Physiol. 1994 79 95
[51] , , , , On the mechanism of the γ → β frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation J. Neurosci. 1999 1088 1105
[52] , , , , Inhibition-based rhythms: experimental and mathematical observations on network dynamics Int. J. Psychophysiol. 2000 315 336
[53] , Excitatory and inhibitory interactions in localized populations of model neurons Biophys. J. 1972 1 24
[54] , , , Spatiotemporal dynamics of neuronal population response in the primary visual cortex PNAS 2013 9517 9522
Cité par Sources :