Solution of the Wang Chang–Uhlenbeck equation for molecular hydrogen
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 1061-1079 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Molecular hydrogen is modeled by numerically solving the Wang Chang–Uhlenbeck equation. The differential scattering cross sections of molecules are calculated using the quantum mechanical scattering theory of rigid rotors. The collision integral is computed by applying a fully conservative projection method. Numerical results for relaxation, heat conduction, and a one-dimensional shock wave are presented.
@article{ZVMMF_2017_57_6_a11,
     author = {Yu. A. Anikin},
     title = {Solution of the {Wang} {Chang{\textendash}Uhlenbeck} equation for molecular hydrogen},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1061--1079},
     year = {2017},
     volume = {57},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a11/}
}
TY  - JOUR
AU  - Yu. A. Anikin
TI  - Solution of the Wang Chang–Uhlenbeck equation for molecular hydrogen
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1061
EP  - 1079
VL  - 57
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a11/
LA  - ru
ID  - ZVMMF_2017_57_6_a11
ER  - 
%0 Journal Article
%A Yu. A. Anikin
%T Solution of the Wang Chang–Uhlenbeck equation for molecular hydrogen
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1061-1079
%V 57
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a11/
%G ru
%F ZVMMF_2017_57_6_a11
Yu. A. Anikin. Solution of the Wang Chang–Uhlenbeck equation for molecular hydrogen. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 1061-1079. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a11/

[1] Wang Chang C. S., Uhlenbeck G. E., Transport phenomena in polyatomic gases, Research Report No CM-681, University of Michigan, 1951

[2] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976

[3] Snider R. F., “Quantum-mechanical modified boltzmann equation for degenerate internal states”, J. Chem. Phys., 32:4 (1960), 1051–1060 | DOI | MR

[4] Thomas M. W., Snider R. F., “Boltzmann equation and angular momentum conservation”, J. Statistical Phys., 2:1 (1970), 61–81 | DOI

[5] Koura K., “Monte Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: Nitrogen shock wave”, Phys. Fluids, 9:11 (1997), 3543–3549 | DOI

[6] Cheremisin F. G., “Reshenie kineticheskogo uravneniya Boltsmana dlya mnogoatomnogo gaza”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 270–287 | Zbl

[7] Anikin Yu. A., Dodulad O. I., “Reshenie kineticheskogo uravneniya dlya dvukhatomnogo gaza s ispolzovaniem differentsialnykh sechenii, rasschitannykh metodom klassicheskikh traektorii”, Zh. vychisl. matem. i matem. fiz., 53:7 (2013), 175–193

[8] Takayanagi K., “The production of rotational and vibrational transitions in encounters between molecules”, Adv. At. Mol. Phys., 1 (1965), 149–194 | DOI | MR

[9] Veirs D. K., Rosenblatt G. M., “Raman line positions in molecular hydrogen: H$_2$, HD, HT, D$_2$, DT, and T$_2$”, J. Mol. Spectrosc., 121:2 (1987), 401–419 | DOI

[10] Green S., “Rotational excitation in H$_2$-H$_2$ collisions: Close-coupling calculations”, J. Chem. Phys., 62:6 (1975), 2271–2277 | DOI

[11] Diep P., Johnson J. K., “An accurate H$_2$-H$_2$ interaction potential from first principles”, J. Chem. Phys., 112:10 (2000), 4465–4473 | DOI

[12] Maté B., Thibault F., Tejeda G., Fernández J. M., Montero S., “Inelastic collisions in para-H$_2$: translation-rotation state-to-state rate coefficients and cross sections at low temperature and energy”, J. Chem. Phys., 122:6 (2005), 064313, 8 pp. | DOI

[13] Johnson B. R., “The multichannel log-derivative method for scattering calculations”, J. Comp. Phys., 13:3 (1973), 445–449 | DOI | MR | Zbl

[14] Milenko Yu. Ya., Sibileva R. M., Strzhemechny M. A., “Natural ortho-para conversion rate in liquid and gaseous hydrogen”, J. of Low Temperature Physics, 107:1 (1997), 77–92 | DOI

[15] Blatt J. M., Biedenharn L. C., “The angular distribution of scattering and reaction cross sections”, Rev. Mod. Phys., 24:4 (1952), 258–272 | DOI | Zbl

[16] Schaefer J., “Transport coefficients of dilute hydrogen gas, calculations and comparisons with experiments”, Chem. Phys., 368:1–2 (2010), 38–48 | DOI

[17] Hutson J. M., Green S., MOLSCAT version 14, Collaborative Comput. Project No 6, , UK Sci. Eng. Research Council, 1994 http://www.giss.nasa.gov/tools/molscat/

[18] Anikin Yu. A., “O tochnosti proektsionnogo scheta integrala stolknovenii”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 1–23

[19] Assael M. J., Mixafendi S., Wakeham W. A., “The viscosity and thermal conductivity of normal hydrogen in the limit of zero density”, J. Phys. Chem. Ref. Data, 15:4 (1986), 1315–1322 | DOI

[20] Leachman J. W., Jacobsen R. T., Penoncello S. G., Huber M. L., “Current status of transport properties of hydrogen”, Internat. J. Thermophysics, 28:3 (2007), 773–795 | DOI

[21] Jonkman R. M., Prangsma G. J., Ertas I., Knaap H. F.P., Beenakker J. J. M., “Rotational relaxation in mixtures of hydrogen isotopes and noble gases”, Physica, 38:3 (1968), 451–455 | DOI

[22] Sluijter C. G., Knaap H. F. P., Beenakker J. J. M., “Determination of rotational relaxation times of hydrogen isotopes by sound absorption measurement at low temperatures”, Physica, 30:4 (1964), 745–762 | DOI | MR

[23] Huber P. W., Kantrowitz A., “Heat-capacity lag measurements in various gases”, J. Chem. Phys., 15:5 (1957), 275–284 | DOI

[24] Gallagher R. J., Fenn J. B., “Rotational relaxation of molecular hydrogen”, J. Chem. Phys., 60:9 (1974), 3492–3498 | DOI

[25] Winter T. G., Hill G. L., “High-temperature ultrasonic measurements rotational relaxation in hydrogen, deuterium, nitrogen and oxygen”, J. Acoust. Soc. Am., 42:4 (1967), 848–858 | DOI

[26] Anikin Yu. A., “Chislennoe issledovanie radiometricheskikh sil posredstvom pryamogo resheniya kineticheskogo uravneniya Boltsmana”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1339–1355 | Zbl

[27] Assael M. J., Assael J.-A. M., Huber M. L., Perkins R. A., Takata Y., “Correlation of the thermal conductivity of normal and parahydrogen from the triple point to 1000 K and up to 100 MPa”, J. Phys. Chem. Ref. Data, 40:3 (2011), 033101, 13 pp. | DOI

[28] Greene E. F., Hornig D. F., “The shape and thickness of shock fronts in argon, hydrogen, nitrogen, and oxygen”, J. Chem. Phys., 21:4 (1953), 617–624 | DOI

[29] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 5, Nauka, M., 1995

[30] Shigeru Takata, Umetsu Hiroki, “Numerical study on effective configurations of the Knudsen pump for separation and compression”, AIP Conference Proc., 1333, no. 1, 2011, 998–1003