@article{ZVMMF_2017_57_6_a11,
author = {Yu. A. Anikin},
title = {Solution of the {Wang} {Chang{\textendash}Uhlenbeck} equation for molecular hydrogen},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1061--1079},
year = {2017},
volume = {57},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a11/}
}
TY - JOUR AU - Yu. A. Anikin TI - Solution of the Wang Chang–Uhlenbeck equation for molecular hydrogen JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1061 EP - 1079 VL - 57 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a11/ LA - ru ID - ZVMMF_2017_57_6_a11 ER -
Yu. A. Anikin. Solution of the Wang Chang–Uhlenbeck equation for molecular hydrogen. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 1061-1079. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a11/
[1] Wang Chang C. S., Uhlenbeck G. E., Transport phenomena in polyatomic gases, Research Report No CM-681, University of Michigan, 1951
[2] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976
[3] Snider R. F., “Quantum-mechanical modified boltzmann equation for degenerate internal states”, J. Chem. Phys., 32:4 (1960), 1051–1060 | DOI | MR
[4] Thomas M. W., Snider R. F., “Boltzmann equation and angular momentum conservation”, J. Statistical Phys., 2:1 (1970), 61–81 | DOI
[5] Koura K., “Monte Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: Nitrogen shock wave”, Phys. Fluids, 9:11 (1997), 3543–3549 | DOI
[6] Cheremisin F. G., “Reshenie kineticheskogo uravneniya Boltsmana dlya mnogoatomnogo gaza”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 270–287 | Zbl
[7] Anikin Yu. A., Dodulad O. I., “Reshenie kineticheskogo uravneniya dlya dvukhatomnogo gaza s ispolzovaniem differentsialnykh sechenii, rasschitannykh metodom klassicheskikh traektorii”, Zh. vychisl. matem. i matem. fiz., 53:7 (2013), 175–193
[8] Takayanagi K., “The production of rotational and vibrational transitions in encounters between molecules”, Adv. At. Mol. Phys., 1 (1965), 149–194 | DOI | MR
[9] Veirs D. K., Rosenblatt G. M., “Raman line positions in molecular hydrogen: H$_2$, HD, HT, D$_2$, DT, and T$_2$”, J. Mol. Spectrosc., 121:2 (1987), 401–419 | DOI
[10] Green S., “Rotational excitation in H$_2$-H$_2$ collisions: Close-coupling calculations”, J. Chem. Phys., 62:6 (1975), 2271–2277 | DOI
[11] Diep P., Johnson J. K., “An accurate H$_2$-H$_2$ interaction potential from first principles”, J. Chem. Phys., 112:10 (2000), 4465–4473 | DOI
[12] Maté B., Thibault F., Tejeda G., Fernández J. M., Montero S., “Inelastic collisions in para-H$_2$: translation-rotation state-to-state rate coefficients and cross sections at low temperature and energy”, J. Chem. Phys., 122:6 (2005), 064313, 8 pp. | DOI
[13] Johnson B. R., “The multichannel log-derivative method for scattering calculations”, J. Comp. Phys., 13:3 (1973), 445–449 | DOI | MR | Zbl
[14] Milenko Yu. Ya., Sibileva R. M., Strzhemechny M. A., “Natural ortho-para conversion rate in liquid and gaseous hydrogen”, J. of Low Temperature Physics, 107:1 (1997), 77–92 | DOI
[15] Blatt J. M., Biedenharn L. C., “The angular distribution of scattering and reaction cross sections”, Rev. Mod. Phys., 24:4 (1952), 258–272 | DOI | Zbl
[16] Schaefer J., “Transport coefficients of dilute hydrogen gas, calculations and comparisons with experiments”, Chem. Phys., 368:1–2 (2010), 38–48 | DOI
[17] Hutson J. M., Green S., MOLSCAT version 14, Collaborative Comput. Project No 6, , UK Sci. Eng. Research Council, 1994 http://www.giss.nasa.gov/tools/molscat/
[18] Anikin Yu. A., “O tochnosti proektsionnogo scheta integrala stolknovenii”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 1–23
[19] Assael M. J., Mixafendi S., Wakeham W. A., “The viscosity and thermal conductivity of normal hydrogen in the limit of zero density”, J. Phys. Chem. Ref. Data, 15:4 (1986), 1315–1322 | DOI
[20] Leachman J. W., Jacobsen R. T., Penoncello S. G., Huber M. L., “Current status of transport properties of hydrogen”, Internat. J. Thermophysics, 28:3 (2007), 773–795 | DOI
[21] Jonkman R. M., Prangsma G. J., Ertas I., Knaap H. F.P., Beenakker J. J. M., “Rotational relaxation in mixtures of hydrogen isotopes and noble gases”, Physica, 38:3 (1968), 451–455 | DOI
[22] Sluijter C. G., Knaap H. F. P., Beenakker J. J. M., “Determination of rotational relaxation times of hydrogen isotopes by sound absorption measurement at low temperatures”, Physica, 30:4 (1964), 745–762 | DOI | MR
[23] Huber P. W., Kantrowitz A., “Heat-capacity lag measurements in various gases”, J. Chem. Phys., 15:5 (1957), 275–284 | DOI
[24] Gallagher R. J., Fenn J. B., “Rotational relaxation of molecular hydrogen”, J. Chem. Phys., 60:9 (1974), 3492–3498 | DOI
[25] Winter T. G., Hill G. L., “High-temperature ultrasonic measurements rotational relaxation in hydrogen, deuterium, nitrogen and oxygen”, J. Acoust. Soc. Am., 42:4 (1967), 848–858 | DOI
[26] Anikin Yu. A., “Chislennoe issledovanie radiometricheskikh sil posredstvom pryamogo resheniya kineticheskogo uravneniya Boltsmana”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1339–1355 | Zbl
[27] Assael M. J., Assael J.-A. M., Huber M. L., Perkins R. A., Takata Y., “Correlation of the thermal conductivity of normal and parahydrogen from the triple point to 1000 K and up to 100 MPa”, J. Phys. Chem. Ref. Data, 40:3 (2011), 033101, 13 pp. | DOI
[28] Greene E. F., Hornig D. F., “The shape and thickness of shock fronts in argon, hydrogen, nitrogen, and oxygen”, J. Chem. Phys., 21:4 (1953), 617–624 | DOI
[29] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 5, Nauka, M., 1995
[30] Shigeru Takata, Umetsu Hiroki, “Numerical study on effective configurations of the Knudsen pump for separation and compression”, AIP Conference Proc., 1333, no. 1, 2011, 998–1003