Shortest and minimal disjunctive normal forms of complete functions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1266-1280
Voir la notice de l'article provenant de la source Math-Net.Ru
It was previously established that almost every Boolean function of $n$ variables with $k$ zeros, where $k$ is at most $\log_2n-\log_2\log_2n+1$, can be associated with a Boolean function of $2^{k-1}-1$ variables with $k$ zeros (complete function) such that the complexity of implementing the original function in the class of disjunctive normal forms is determined only by the complexity of implementing the complete function. An asymptotically tight bound is obtained for the minimum possible number of literals contained in the disjunctive normal forms of the complete function.
@article{ZVMMF_2015_55_7_a13,
author = {Yu. V. Maximov},
title = {Shortest and minimal disjunctive normal forms of complete functions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1266--1280},
publisher = {mathdoc},
volume = {55},
number = {7},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a13/}
}
TY - JOUR AU - Yu. V. Maximov TI - Shortest and minimal disjunctive normal forms of complete functions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1266 EP - 1280 VL - 55 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a13/ LA - ru ID - ZVMMF_2015_55_7_a13 ER -
Yu. V. Maximov. Shortest and minimal disjunctive normal forms of complete functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1266-1280. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a13/