How to characterize $(T+H)$-matrices and $(T+H)$-circulants
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 185-188

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a given $n\times$ matrix. How to find out whether $A$ is a $(T+H)$-matrix? If the answer is positive, then, perhaps, $A$ is even a $(T+H)$-circulant? How then the circulant components of its $(T+H)$-decomposition can be found? Algorithmic answers are given to all these questions.
@article{ZVMMF_2015_55_2_a1,
     author = {Kh. D. Ikramov and V. N. Chugunov},
     title = {How to characterize $(T+H)$-matrices and $(T+H)$-circulants},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {185--188},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a1/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - V. N. Chugunov
TI  - How to characterize $(T+H)$-matrices and $(T+H)$-circulants
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 185
EP  - 188
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a1/
LA  - ru
ID  - ZVMMF_2015_55_2_a1
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A V. N. Chugunov
%T How to characterize $(T+H)$-matrices and $(T+H)$-circulants
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 185-188
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a1/
%G ru
%F ZVMMF_2015_55_2_a1
Kh. D. Ikramov; V. N. Chugunov. How to characterize $(T+H)$-matrices and $(T+H)$-circulants. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 185-188. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a1/