How to characterize $(T+H)$-matrices and $(T+H)$-circulants
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 185-188
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $A$ be a given $n\times$ matrix. How to find out whether $A$ is a $(T+H)$-matrix? If the answer is positive, then, perhaps, $A$ is even a $(T+H)$-circulant? How then the circulant components of its $(T+H)$-decomposition can be found? Algorithmic answers are given to all these questions.
@article{ZVMMF_2015_55_2_a1,
author = {Kh. D. Ikramov and V. N. Chugunov},
title = {How to characterize $(T+H)$-matrices and $(T+H)$-circulants},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {185--188},
year = {2015},
volume = {55},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a1/}
}
TY - JOUR AU - Kh. D. Ikramov AU - V. N. Chugunov TI - How to characterize $(T+H)$-matrices and $(T+H)$-circulants JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 185 EP - 188 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a1/ LA - ru ID - ZVMMF_2015_55_2_a1 ER -
Kh. D. Ikramov; V. N. Chugunov. How to characterize $(T+H)$-matrices and $(T+H)$-circulants. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 185-188. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a1/
[1] Ikramov Kh. D., Chugunov V. N., Abdikalykov A. K., “O lokalnykh usloviyakh, kharakterizuyuschikh mnozhestvo $(T+H)$-matrits”, Dokl. AN, 457:1 (2014), 17–18 | DOI
[2] Bozzo E., “Algebras of higher dimension for displacement decompositions and computations with Toeplitz plus Hankel matrices”, Linear Algebra Appl., 230 (1995), 127–150 | DOI
[3] Ikramov Kh. D., Saveleva N. V., “O nekotorykh kvazidiagonalizuemykh semeistvakh matrits”, Zh. vychisl. matem. i matem. fiz., 38:7 (1998), 1075–1084