Bourbaki’s structure theory in the problem of complex systems simulation models synthesis and model-oriented programming
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 153-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to the application of Bourbaki’s structure theory to substantiate the synthesis of simulation models of complex multicomponent systems, where every component may be a complex system itself. An application of the Bourbaki’s structure theory offers a new approach to the design and computer implementation of simulation models of complex multicomponent systems—model synthesis and model-oriented programming. It differs from the traditional object-oriented approach. The central concept of this new approach and at the same time, the basic building block for the construction of more complex structures is the concept of models-components. A model-component endowed with a more complicated structure than, for example, the object in the object-oriented analysis. This structure provides to the model-component an independent behavior-the ability of standard responds to standard requests of its internal and external environment. At the same time, the computer implementation of model-component’s behavior is invariant under the integration of models-components into complexes. This fact allows one firstly to construct fractal models of any complexity, and secondly to implement a computational process of such constructions uniformly-by a single universal program. In addition, the proposed paradigm allows one to exclude imperative programming and to generate computer code with a high degree of parallelism.
@article{ZVMMF_2015_55_1_a13,
     author = {Yu. I. Brodsky},
     title = {Bourbaki{\textquoteright}s structure theory in the problem of complex systems simulation models synthesis and model-oriented programming},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {153--164},
     year = {2015},
     volume = {55},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a13/}
}
TY  - JOUR
AU  - Yu. I. Brodsky
TI  - Bourbaki’s structure theory in the problem of complex systems simulation models synthesis and model-oriented programming
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 153
EP  - 164
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a13/
LA  - ru
ID  - ZVMMF_2015_55_1_a13
ER  - 
%0 Journal Article
%A Yu. I. Brodsky
%T Bourbaki’s structure theory in the problem of complex systems simulation models synthesis and model-oriented programming
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 153-164
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a13/
%G ru
%F ZVMMF_2015_55_1_a13
Yu. I. Brodsky. Bourbaki’s structure theory in the problem of complex systems simulation models synthesis and model-oriented programming. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 153-164. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a13/

[1] Buslenko N. P., Modelirovanie slozhnykh sistem, Nauka, M., 1978

[2] Buslenko N. P., “Slozhnaya sistema”, Bolshaya Sovetskaya Entsiklopediya, Izd. 3-e, Sovetskaya entsiklopediya, M., 1969–1978

[3] Burbaki N., Teoriya mnozhestv, Mir, M., 1965

[4] Pavlovskii Yu. N., Geometricheskaya teoriya dekompozitsii i nekotorye ee prilozheniya, VTs RAN, M., 2011

[5] Pavlovskii Yu. N., Smirnova T. G., Vvedenie v geometricheskuyu teoriyu dekompozitsii, Fazis, M., 2006

[6] Pavlovskii Yu. N., Smirnova T. G., Problema dekompozitsii v matematicheskom modelirovanii, Fazis, M., 1998

[7] Elkin V. I., Reduktsiya nelineinykh upravlyaemykh sistem. Dekompozitsiya i invariantnost po vozmuscheniyam, FAZIS, M., 2003

[8] Brodskii Yu. I., Modelnyi sintez i modelno-orientirovannoe programmirovanie, VTs RAN, M., 2013

[9] Brodskii Yu. I., Raspredelennoe imitatsionnoe modelirovanie slozhnykh sistem, VTs RAN, M., 2010

[10] Brodskii Yu. I., Pavlovskii Yu. N., “Razrabotka instrumentalnoi sistemy raspredelennogo imitatsionnogo modelirovaniya”, Informatsionnye tekhnologii i vychisl. sistemy, 2009, no. 4, 9–21

[11] Brodskii Yu. I., Lebedev V. Yu., Instrumentalnaya sistema imitatsii MISS, VTs AN SSSR, M., 1991

[12] Brodskii Yu. I., Myagkov A. N., “Deklarativnoe i imperativnoe programmirovanie v imitatsionnom modelirovanii slozhnykh mnogokomponentnykh sistem”, Vestn. MGTU. Ser. Estestvennye nauki, 2012, no. 4, Spets. vyp. Matematicheskoe modelirovanie, 178–187

[13] Ponomarev I. N., Vvedenie v matematicheskuyu logiku i rody struktur, Uch. posobie, MFTI, M., 2007

[14] Buch G., Rambo D., Yakobson I., Vvedenie v UML ot sozdatelei yazyka, Per. s angl. Mukhin N. M., Izd. 2-e, DMK Press, 2012

[15] Fauler M., UML. Osnovy, Per. s angl., Izd. 3-e, Simvol-Plyus, SPb., 2004

[16] Gretskii M. N., “Strukturalizm (filosof.)”, Bolshaya Sovetskaya Entsiklopediya, Izd. 3-e, Sovetskaya entsiklopediya, M., 1969–1978

[17] A. P. Norden (red.), Ob osnovaniyakh geometrii, Sb. klassicheskikh rabot po geometrii Lobachevskogo i razvitiyu ee idei, Gostekhteorizdat, M., 1956