Mathematical simulation of acoustic wave scattering in fractured media
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 9, pp. 1676-1693 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The simulation of acoustic waves in fractured media is considered. A self-consistent field model is proposed that describes the formation of a scattered field and the attenuation of the incident field. For the total field, a wave equation with a complex velocity is derived and the corresponding dispersion equation is studied. A frequency-dependent field damping law and an energy variation law are established. An initial and a boundary value problem for waves in a fractured medium is addressed. A finite-difference scheme for the initial value problem is constructed, and a condition for its stability is established. Numerical results are presented.
@article{ZVMMF_2012_52_9_a9,
     author = {A. V. Baev},
     title = {Mathematical simulation of acoustic wave scattering in fractured media},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1676--1693},
     year = {2012},
     volume = {52},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a9/}
}
TY  - JOUR
AU  - A. V. Baev
TI  - Mathematical simulation of acoustic wave scattering in fractured media
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1676
EP  - 1693
VL  - 52
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a9/
LA  - ru
ID  - ZVMMF_2012_52_9_a9
ER  - 
%0 Journal Article
%A A. V. Baev
%T Mathematical simulation of acoustic wave scattering in fractured media
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1676-1693
%V 52
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a9/
%G ru
%F ZVMMF_2012_52_9_a9
A. V. Baev. Mathematical simulation of acoustic wave scattering in fractured media. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 9, pp. 1676-1693. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a9/

[1] Baev A. V., Kutsenko N. V., Faizullin I. S., “O zatukhanii i rasseyanii seismicheskikh voln v treschinovatykh sredakh”, Geofizika, 2007, no. 2, 16–20

[2] Baev A. V., Kutsenko N. V., “Reshenie zadachi vosstanovleniya koeffitsienta dissipatsii variatsionnym metodom”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1895–1906 | MR

[3] Baev A. V., “On local solvability of inverse dissipative scattering problems”, J. of Inverse and Ill-Posed Problems, 9:4 (2001), 227–247 | MR

[4] Baev A. V., “Metod resheniya obratnoi dinamicheskoi zadachi seismiki s pogloscheniem”, Pryamye i obratnye zadachi matematicheskoi fiziki, Izd-vo MGU, M., 1991, 26–30 | MR

[5] Baev A. V., “O reshenii obratnykh zadach dissipativnoi teorii rasseyaniya”, Dokl. AN SSSR, 315:5 (1990), 1103–1104 | MR | Zbl

[6] Isakovich M. A., Obschaya akustika, Nauka, M., 1965

[7] Landau L. D., Lifshits E. M., Teoriya uprugosti, Nauka, M., 1965 | MR

[8] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1988

[9] Molotkov L. A., Issledovanie rasprostraneniya voln v poristykh i treschinovatykh sredakh na osnove effektivnykh modelei Bio i sloistykh sred, Nauka, SPb., 2001

[10] Bitsadze A. V., Uravneniya matematicheskoi fiziki, Nauka, M., 1982 | MR

[11] Berdichevskii M. N., Dmitriev V. I., Modeli i metody magnitotelluriki, Nauchnyi mir, M., 2009