Mathematical simulation of acoustic wave scattering in fractured media
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 9, pp. 1676-1693

Voir la notice de l'article provenant de la source Math-Net.Ru

The simulation of acoustic waves in fractured media is considered. A self-consistent field model is proposed that describes the formation of a scattered field and the attenuation of the incident field. For the total field, a wave equation with a complex velocity is derived and the corresponding dispersion equation is studied. A frequency-dependent field damping law and an energy variation law are established. An initial and a boundary value problem for waves in a fractured medium is addressed. A finite-difference scheme for the initial value problem is constructed, and a condition for its stability is established. Numerical results are presented.
@article{ZVMMF_2012_52_9_a9,
     author = {A. V. Baev},
     title = {Mathematical simulation of acoustic wave scattering in fractured media},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1676--1693},
     publisher = {mathdoc},
     volume = {52},
     number = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a9/}
}
TY  - JOUR
AU  - A. V. Baev
TI  - Mathematical simulation of acoustic wave scattering in fractured media
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1676
EP  - 1693
VL  - 52
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a9/
LA  - ru
ID  - ZVMMF_2012_52_9_a9
ER  - 
%0 Journal Article
%A A. V. Baev
%T Mathematical simulation of acoustic wave scattering in fractured media
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1676-1693
%V 52
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a9/
%G ru
%F ZVMMF_2012_52_9_a9
A. V. Baev. Mathematical simulation of acoustic wave scattering in fractured media. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 9, pp. 1676-1693. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a9/