Locally one-dimensional scheme for the heat equation of fractional order with concentrated heat capacity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 9, pp. 1656-1665 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2012_52_9_a7,
     author = {A. K. Bazzaev and A. B. Mambetova and M. H. Shhanukov-Lafishev},
     title = {Locally one-dimensional scheme for the heat equation of fractional order with concentrated heat capacity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1656--1665},
     year = {2012},
     volume = {52},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a7/}
}
TY  - JOUR
AU  - A. K. Bazzaev
AU  - A. B. Mambetova
AU  - M. H. Shhanukov-Lafishev
TI  - Locally one-dimensional scheme for the heat equation of fractional order with concentrated heat capacity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1656
EP  - 1665
VL  - 52
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a7/
LA  - ru
ID  - ZVMMF_2012_52_9_a7
ER  - 
%0 Journal Article
%A A. K. Bazzaev
%A A. B. Mambetova
%A M. H. Shhanukov-Lafishev
%T Locally one-dimensional scheme for the heat equation of fractional order with concentrated heat capacity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1656-1665
%V 52
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a7/
%G ru
%F ZVMMF_2012_52_9_a7
A. K. Bazzaev; A. B. Mambetova; M. H. Shhanukov-Lafishev. Locally one-dimensional scheme for the heat equation of fractional order with concentrated heat capacity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 9, pp. 1656-1665. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a7/

[1] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[2] Nerpin S. V., Chudnovskii A. F., Energo- i massoobmen v sisteme rastenie–pochva–vozdukh, Gidrometeoizdat, L., 1975

[3] Nigmatulin R. R., “Osobennosti relaksatsii sistemy s “ostatochnoi” pamyatyu”, Fiz. tverdogo tela, 27:5 (1985), 1583–1585

[4] Chukbar K. V., “Stokhasticheskii perenos i drobnye proizvodnye”, Zh. eksperim. i teor. fiz., 108:5(11) (1995), 1875–1884

[5] Kobelev V. L., Kobelev Ya. L., Romanov E. P., “Nedebaevskaya relaksatsiya i diffuziya vo fraktalnom prostranstve”, Dokl. RAN, 361:6 (1998), 755–758 | MR | Zbl

[6] Kobelev V. L., Kobelev Ya. L., Romanov E. P., “Avtovolnovye protsessy pri nelineinoi fraktalnoi diffuzii”, Dokl. RAN, 369:3 (1999), 332–333 | Zbl

[7] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Chislennye metody resheniya uravneniya diffuzii s drobnoi proizvodnoi po vremeni v odnomernom sluchae, Preprint No IBRAE-2003-12, IBRAE RAN, M., 2003

[8] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Yurkov Yu. I., “Pryamye zadachi neklassicheskogo perenosa radionuklidov v geologicheskikh formatsiyakh”, Izv. RAN. Energetika, 2004, no. 4, 121–130

[9] Goloviznin V. M., Korotkin I. A., “Metody chislennykh reshenii nekotorykh odnomernykh uravnenii s drobnymi proizvodnymi”, Differents. ur-niya, 42:7 (2006), 907–913 | MR | Zbl

[10] Goloviznin V. M., Kondratenko P. S., Matveev L. V. i dr., Anomalnaya diffuziya radionuklidov v silno neodnorodnykh geologicheskikh formatsiyakh, Nauka, M., 2010

[11] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[12] Lafisheva M. M., Shkhanukov M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1878–1887 | MR | Zbl

[13] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 415 pp. | Zbl