Flux-splitting schemes for parabolic problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1415-1425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Splitting with respect to space variables can be used in solving boundary value problems for second-order parabolic equations. Classical alternating direction methods and locally one-dimensional schemes could be examples of this approach. For problems with rapidly varying coefficients, a convenient tool is the use of fluxes (directional derivatives) as independent variables. The original equation is written as a system in which not only the desired solution but also directional derivatives (fluxes) are unknowns. In this paper, locally one-dimensional additional schemes (splitting schemes) for second-order parabolic equations are examined. By writing the original equation in flux variables, certain two-level locally one-dimensional schemes are derived. The unconditional stability of locally one-dimensional flux schemes of the first and second approximation order with respect to time is proved.
@article{ZVMMF_2012_52_8_a4,
     author = {P. N. Vabishchevich},
     title = {Flux-splitting schemes for parabolic problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1415--1425},
     year = {2012},
     volume = {52},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a4/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
TI  - Flux-splitting schemes for parabolic problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1415
EP  - 1425
VL  - 52
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a4/
LA  - ru
ID  - ZVMMF_2012_52_8_a4
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%T Flux-splitting schemes for parabolic problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1415-1425
%V 52
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a4/
%G ru
%F ZVMMF_2012_52_8_a4
P. N. Vabishchevich. Flux-splitting schemes for parabolic problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1415-1425. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a4/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[2] Grossmann C., Roos H.-G., Stynes M., Numerical treatment of partial differential equations, Springer, Berlin, 2007 | MR

[3] Knabner P., Angermann L., Numerical methods for elliptic and parabolic partial differential equations, Springer, Berlin, 2003 | MR

[4] LeVeque R. J., Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, Society for Industrial an Applied Mathematics, 2007 | MR | Zbl

[5] Degtyarev L. M., Favorskii A. P., “Potokovyi variant metoda progonki”, Zh. vychisl. matem. i matem. fiz., 8:3 (1968), 679–684 | MR

[6] Degtyarev L. M., Favorskii A. P., “Potokovyi variant metoda progonki dlya raznostnykh zadach s silno menyayuschimisya koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 9:1 (1969), 211–218 | MR | Zbl

[7] Taran M. D., Favorskii A. P., “Chislennoe reshenie dvumernogo uravneniya teploprovodnosti s silno menyayuschimisya koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 19:4 (1979), 1069–1073 | MR | Zbl

[8] Belov V. M., Dozortseva N. S., Rybalchenko T. A., Sukhanov V. A., “Chislennoe reshenie dvumernogo uravneniya teploprovodnosti s silno menyayuschimisya koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 36:3 (1996), 93–100 | MR | Zbl

[9] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer-Verlag, New York, 1991 | MR | Zbl

[10] Roberts J. E., Thomas J. M., “Mixed and hybrid methods”, Handbook of numerical analysis, II, Elsevier Science Publishers B. V., Amsterdam, 1991 | MR

[11] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[12] Marchuk G. I., “Splitting and alternating direction methods”, Handbook of numerical analysis, I, Elsevier Science Publishers B. V., Amsterdam, 1990 | MR

[13] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 1999 | MR

[14] Radvogin Yu. B., “Ekonomichnye algoritmy chislennogo resheniya mnogomernogo uravneniya teploprovodnosti”, Dokl. RAN, 388:3 (2003), 295–297 | MR | Zbl

[15] Gein S. V., Zaitsev N. A., Posvyanskii V. S., Radvogin Yu. B., Metod nezavisimykh potokov dlya chislennogo resheniya mnogomernogo uravneniya teploprovodnosti, Preprint No 53, IPM im. M. V. Keldysha RAN, M., 2003

[16] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[17] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl

[18] Samarskii A. A., Matus P. P., Vabishchevich P. N., Difference schemes with operator factors, Kluwer Academic Publ., Dordrecht, 2002 | MR | Zbl

[19] Douglas Jr. J., Rachford H. H., “On the numerical solution of heat conduction problems in two and threespace variables”, Trans. Amer. Math. Soc., 82 (1956), 421–439 | DOI | MR | Zbl

[20] Peaceman D. W., Rachford H. H., “The numerical solution of parabolic and elliptic differential equations”, J. SIAM, 3 (1955), 28–41 | MR | Zbl

[21] Vabischevich P. N., “Postroenie skhem rasschepleniya na osnove approksimatsii operatora perekhoda”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 253–262 | MR

[22] Vabischevich P. N., Samarskii A. A., “Reshenie zadach dinamiki neszhimaemoi zhidkosti s peremennoi vyazkostyu”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1813–1822 | MR

[23] Vabischevich P. N., “Raznostnye skhemy dlya resheniya nestatsionarnykh vektornykh zadach”, Differents. ur-niya, 40:7 (2004), 936–943 | MR

[24] Samarskii A. A., “Ob odnom ekonomichnom algoritme chislennogo resheniya sistem differentsialnykh i algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 4:3 (1964), 580–585 | MR