@article{ZVMMF_2010_50_9_a8,
author = {V. A. Garanzha},
title = {Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1640--1668},
year = {2010},
volume = {50},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a8/}
}
TY - JOUR AU - V. A. Garanzha TI - Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1640 EP - 1668 VL - 50 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a8/ LA - ru ID - ZVMMF_2010_50_9_a8 ER -
%0 Journal Article %A V. A. Garanzha %T Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1640-1668 %V 50 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a8/ %G ru %F ZVMMF_2010_50_9_a8
V. A. Garanzha. Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1640-1668. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a8/
[1] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Rat. Mech. Anal., 63 (1977), 337–403 | DOI | MR | Zbl
[2] Ball J. M., “Global invertibility of Sobolev functions and the interpenetration of matter”, Proc. Roy. Soc. Edinburgh, 88A (1981), 315–328 | MR | Zbl
[3] Godunov S. K., Romensky E. I., “Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media”, Comput. Fluid Dynamics Rev., John Wiley Sons, Chichester, 1995, 19–30 | Zbl
[4] Qiun T., “Symmetrizing nonlinear elastodynamic system”, J. Elasticity, 50 (1998), 245–252 | DOI | MR
[5] Kondaurov V. I., “O zakonakh sokhraneniya i simmetrizatsii uravnenii nelineinoi termouprugosti”, Dokl. AN SSSR, 256:4 (1981), 819–823 | MR | Zbl
[6] Romenskii E. I., “Zakony sokhraneniya i simmetrichnaya zapis uravnenii teorii uprugosti”, Tr. seminara im. S. L. Soboleva, 1, 1984, 132–143 | MR
[7] Godunov S. K., “Interesnyi klass kvazilineinykh sistem”, Dokl. AN SSSR, 139:3 (1961), 520–523
[8] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauch. kniga, Novosibirsk, 1998
[9] Demoulini S., Stuart D. M. A., Tzavaras A. E., “A variational approximation scheme for three-dimensional elastodynamics with polyconvex energy”, Arch. Rat. Mech. Anal., 157 (2001), 325–344 | DOI | MR | Zbl
[10] Demoulini S., Stuart D. M. A., Tzavaras A. E., “Construction of entropy solutions for one-dimensional elastodynamics via time discretization”, Ann. Inst. H. Poincare Anal. non Lineaire, 17:6 (2000), 711–731 | DOI | MR | Zbl
[11] Godunov S. K., Peshkov I. M., “Simmetricheskie giperbolicheskie uravneniya nelineinoi teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1034–1055 | Zbl
[12] Bellido J. C., Mora-Corral C., “Approximation of Hölder continuous homeomorphisms by picewise affine homeomorphisms”, Houston J. Math., 2009 (to appear) | MR
[13] Aleksandrov A. D., “O poverkhnosti predstavimykh raznostyu vypuklykh funktsii”, Izv. AN KazSSR. Ser. matem. i mekhan., 1949, no. 3, 3–20 | MR
[14] Hartman P., “On functions representable as a difference of convex functions”, Pacific J. Math., 9:3 (1959), 707–713 | MR | Zbl
[15] Aleksandrov A. D., “K teorii smeshannykh ob'emov vypuklykh tel. I: Rasshirenie nekotorykh ponyatii teorii vypuklykh tel”, Matem. sb., 2(44):5 (1937), 947–972 | MR | Zbl
[16] Garanzha V. A., “Teoremy suschestvovaniya i obratimosti dlya variatsionnogo postroeniya kvaziizometrichnykh otobrazhenii so svobodnymi granitsami”, Zh. vychisl. matem. i matem. fiz., 45:3 (2005), 484–494 | MR | Zbl
[17] Garanzha V. A., “Approximation of the curvature of Alexandrov surfaces using dual polyhedral”, Rus. J. Numer. Analys. Modeling, 24:5 (2009), 409–432 | DOI | MR
[18] Lantsosh K., Variatsionnye printsipy mekhaniki, Mir, M., 1965
[19] Fenchel W., “On conjugate convex functions”, Canad. J. Math., 1 (1949), 73–77 | DOI | MR | Zbl
[20] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | Zbl
[21] Friedrichs K. O., Lax P. D., “Systems of conservation equations with convex extension”, Proc. Nat. Acad. Sci. USA, 68:8 (1971), 1868–1688 | DOI | MR
[22] Evans L. C., “A survey of entropy methods for partial differential equations”, Bull. Amer. Math. Soc., 41:4 (2004), 409–438 | DOI | MR | Zbl
[23] Friedrichs K. O., “Symmetric hyperbolic linear differential equations”, Communs Pure. Appl. Math., 7:2 (1954), 345–392 | DOI | MR | Zbl
[24] Godunov S. K., “Problema obobschennogo resheniya v teorii kvazilineinykh uravnenii i v gazovoi dinamike”, Uspekhi matem. nauk, 17:3 (1962), 147–158 | MR | Zbl
[25] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992
[26] Ogden R. W., Nonlinear elastic deformations, Dover, New York, 1997 | MR
[27] Ciarlet P. G., Geymonat G., “Sur les lois de comportement en elasticite non-lineaire compressible”, C. r. Acad. Sci. Paris. Ser. II, 295 (1982), 423–426 | MR | Zbl
[28] Ogden R. W., “Large deformations isotropic elasticity: on the correlation of theory and experiment for compressible rubber-like solids”, Proc. Roy. Soc. London A, 328 (1972), 567–583 | DOI | Zbl
[29] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR
[30] Wagner D. H., “Symmetric hyperbolic equations of motion for a hyperelastic material”, J. Hyperbolic Different. Equat., 3 (2009), 615–630 | DOI | MR | Zbl
[31] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl
[32] Blatz P. J., Ko W. L., “Application of finite elastic theory to the deformation of rubbery materials”, Trans. Soc. Rheology, 6 (1962), 223–251 | DOI
[33] Palmov V. A., Kolebaniya v uprugo-plastichnykh sredakh, Nauka, M., 1976
[34] Holzapfel G. A., “Biomechanics of soft tissue”, Lemaitre Handbook Materials Behavior Models, Acad. Press, London, 2001, 1057–1071
[35] Garanzha V. A., “Barernyi metod postroeniya kvaziizometrichnykh setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1685–1705 | MR | Zbl
[36] Antman S. S., Nonlinear problems in elasticity, Appl. Math. Sci., 107, Springer, New York, 2004
[37] Ball J. M., “Finite-time blow-up in nonlinear problems”, Nonlinear Evolution Equations, AP, 1978, 189–205 | MR