Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1640-1668 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the nonstationary finite-deformation thermoelasticity equations in Lagrangian and Eulerian coordinates can be written in a thermodynamically consistent Godunov canonical form satisfying the Friedrichs hyperbolicity conditions, provided that the elastic potential is a convex function of entropy and of the minors of the elastic deformation Jacobian matrix. In other words, the elastic potential is assumed to be polyconvex in the sense of Ball. It is well known that Ball’s approach to proving the existence and invertibility of stationary elastic deformations assumes that the elastic potential essentially depends on the second-order minors of the Jacobian matrix (i.e., on the cofactor matrix). However, elastic potentials constructed as approximations of rheological laws for actual materials generally do not satisfy this requirement. Instead, they may depend, for example, only on the first-order minors (i.e., the matrix elements) and on the Jacobian determinant. A method for constructing and regularizing polyconvex elastic potentials is proposed that does not require an explicit dependence on the cofactor matrix. It guarantees that the elastic deformations are quasiisometries and preserves the Lame constants of the elastic material.
@article{ZVMMF_2010_50_9_a8,
     author = {V. A. Garanzha},
     title = {Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1640--1668},
     year = {2010},
     volume = {50},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a8/}
}
TY  - JOUR
AU  - V. A. Garanzha
TI  - Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1640
EP  - 1668
VL  - 50
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a8/
LA  - ru
ID  - ZVMMF_2010_50_9_a8
ER  - 
%0 Journal Article
%A V. A. Garanzha
%T Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1640-1668
%V 50
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a8/
%G ru
%F ZVMMF_2010_50_9_a8
V. A. Garanzha. Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1640-1668. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a8/

[1] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Rat. Mech. Anal., 63 (1977), 337–403 | DOI | MR | Zbl

[2] Ball J. M., “Global invertibility of Sobolev functions and the interpenetration of matter”, Proc. Roy. Soc. Edinburgh, 88A (1981), 315–328 | MR | Zbl

[3] Godunov S. K., Romensky E. I., “Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media”, Comput. Fluid Dynamics Rev., John Wiley Sons, Chichester, 1995, 19–30 | Zbl

[4] Qiun T., “Symmetrizing nonlinear elastodynamic system”, J. Elasticity, 50 (1998), 245–252 | DOI | MR

[5] Kondaurov V. I., “O zakonakh sokhraneniya i simmetrizatsii uravnenii nelineinoi termouprugosti”, Dokl. AN SSSR, 256:4 (1981), 819–823 | MR | Zbl

[6] Romenskii E. I., “Zakony sokhraneniya i simmetrichnaya zapis uravnenii teorii uprugosti”, Tr. seminara im. S. L. Soboleva, 1, 1984, 132–143 | MR

[7] Godunov S. K., “Interesnyi klass kvazilineinykh sistem”, Dokl. AN SSSR, 139:3 (1961), 520–523

[8] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauch. kniga, Novosibirsk, 1998

[9] Demoulini S., Stuart D. M. A., Tzavaras A. E., “A variational approximation scheme for three-dimensional elastodynamics with polyconvex energy”, Arch. Rat. Mech. Anal., 157 (2001), 325–344 | DOI | MR | Zbl

[10] Demoulini S., Stuart D. M. A., Tzavaras A. E., “Construction of entropy solutions for one-dimensional elastodynamics via time discretization”, Ann. Inst. H. Poincare Anal. non Lineaire, 17:6 (2000), 711–731 | DOI | MR | Zbl

[11] Godunov S. K., Peshkov I. M., “Simmetricheskie giperbolicheskie uravneniya nelineinoi teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1034–1055 | Zbl

[12] Bellido J. C., Mora-Corral C., “Approximation of Hölder continuous homeomorphisms by picewise affine homeomorphisms”, Houston J. Math., 2009 (to appear) | MR

[13] Aleksandrov A. D., “O poverkhnosti predstavimykh raznostyu vypuklykh funktsii”, Izv. AN KazSSR. Ser. matem. i mekhan., 1949, no. 3, 3–20 | MR

[14] Hartman P., “On functions representable as a difference of convex functions”, Pacific J. Math., 9:3 (1959), 707–713 | MR | Zbl

[15] Aleksandrov A. D., “K teorii smeshannykh ob'emov vypuklykh tel. I: Rasshirenie nekotorykh ponyatii teorii vypuklykh tel”, Matem. sb., 2(44):5 (1937), 947–972 | MR | Zbl

[16] Garanzha V. A., “Teoremy suschestvovaniya i obratimosti dlya variatsionnogo postroeniya kvaziizometrichnykh otobrazhenii so svobodnymi granitsami”, Zh. vychisl. matem. i matem. fiz., 45:3 (2005), 484–494 | MR | Zbl

[17] Garanzha V. A., “Approximation of the curvature of Alexandrov surfaces using dual polyhedral”, Rus. J. Numer. Analys. Modeling, 24:5 (2009), 409–432 | DOI | MR

[18] Lantsosh K., Variatsionnye printsipy mekhaniki, Mir, M., 1965

[19] Fenchel W., “On conjugate convex functions”, Canad. J. Math., 1 (1949), 73–77 | DOI | MR | Zbl

[20] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | Zbl

[21] Friedrichs K. O., Lax P. D., “Systems of conservation equations with convex extension”, Proc. Nat. Acad. Sci. USA, 68:8 (1971), 1868–1688 | DOI | MR

[22] Evans L. C., “A survey of entropy methods for partial differential equations”, Bull. Amer. Math. Soc., 41:4 (2004), 409–438 | DOI | MR | Zbl

[23] Friedrichs K. O., “Symmetric hyperbolic linear differential equations”, Communs Pure. Appl. Math., 7:2 (1954), 345–392 | DOI | MR | Zbl

[24] Godunov S. K., “Problema obobschennogo resheniya v teorii kvazilineinykh uravnenii i v gazovoi dinamike”, Uspekhi matem. nauk, 17:3 (1962), 147–158 | MR | Zbl

[25] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992

[26] Ogden R. W., Nonlinear elastic deformations, Dover, New York, 1997 | MR

[27] Ciarlet P. G., Geymonat G., “Sur les lois de comportement en elasticite non-lineaire compressible”, C. r. Acad. Sci. Paris. Ser. II, 295 (1982), 423–426 | MR | Zbl

[28] Ogden R. W., “Large deformations isotropic elasticity: on the correlation of theory and experiment for compressible rubber-like solids”, Proc. Roy. Soc. London A, 328 (1972), 567–583 | DOI | Zbl

[29] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR

[30] Wagner D. H., “Symmetric hyperbolic equations of motion for a hyperelastic material”, J. Hyperbolic Different. Equat., 3 (2009), 615–630 | DOI | MR | Zbl

[31] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[32] Blatz P. J., Ko W. L., “Application of finite elastic theory to the deformation of rubbery materials”, Trans. Soc. Rheology, 6 (1962), 223–251 | DOI

[33] Palmov V. A., Kolebaniya v uprugo-plastichnykh sredakh, Nauka, M., 1976

[34] Holzapfel G. A., “Biomechanics of soft tissue”, Lemaitre Handbook Materials Behavior Models, Acad. Press, London, 2001, 1057–1071

[35] Garanzha V. A., “Barernyi metod postroeniya kvaziizometrichnykh setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1685–1705 | MR | Zbl

[36] Antman S. S., Nonlinear problems in elasticity, Appl. Math. Sci., 107, Springer, New York, 2004

[37] Ball J. M., “Finite-time blow-up in nonlinear problems”, Nonlinear Evolution Equations, AP, 1978, 189–205 | MR