Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1640-1668
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              It is shown that the nonstationary finite-deformation thermoelasticity equations in Lagrangian and Eulerian coordinates can be written in a thermodynamically consistent Godunov canonical form satisfying the Friedrichs hyperbolicity conditions, provided that the elastic potential is a convex function of entropy and of the minors of the elastic deformation Jacobian matrix. In other words, the elastic potential is assumed to be polyconvex in the sense of Ball. It is well known that Ball’s approach to proving the existence and invertibility of stationary elastic deformations assumes that the elastic potential essentially depends on the second-order minors of the Jacobian matrix (i.e., on the cofactor matrix). However, elastic potentials constructed as approximations of rheological laws for actual materials generally do not satisfy this requirement. Instead, they may depend, for example, only on the first-order minors (i.e., the matrix elements) and on the Jacobian determinant. A method for constructing and regularizing polyconvex elastic potentials is proposed that does not require an explicit dependence on the cofactor matrix. It guarantees that the elastic deformations are quasiisometries and preserves the Lame constants of the elastic material.
            
            
            
          
        
      @article{ZVMMF_2010_50_9_a8,
     author = {V. A. Garanzha},
     title = {Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1640--1668},
     publisher = {mathdoc},
     volume = {50},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a8/}
}
                      
                      
                    TY - JOUR AU - V. A. Garanzha TI - Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1640 EP - 1668 VL - 50 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a8/ LA - ru ID - ZVMMF_2010_50_9_a8 ER -
%0 Journal Article %A V. A. Garanzha %T Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1640-1668 %V 50 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a8/ %G ru %F ZVMMF_2010_50_9_a8
V. A. Garanzha. Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1640-1668. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a8/
