Finite-dimensional models of diffusion chaos
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 860-875 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some parabolic systems of the reaction-diffusion type exhibit the phenomenon of diffusion chaos. Specifically, when the diffusivities decrease proportionally, while the other parameters of a system remain fixed, the system exhibits a chaotic attractor whose dimension increases indefinitely. Various finite-dimensional models of diffusion chaos are considered that represent chains of coupled ordinary differential equations and similar chains of discrete mappings. A numerical analysis suggests that these chains with suitably chosen parameters exhibit chaotic attractors of arbitrarily high dimensions.
@article{ZVMMF_2010_50_5_a6,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Finite-dimensional models of diffusion chaos},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {860--875},
     year = {2010},
     volume = {50},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a6/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Finite-dimensional models of diffusion chaos
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 860
EP  - 875
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a6/
LA  - ru
ID  - ZVMMF_2010_50_5_a6
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Finite-dimensional models of diffusion chaos
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 860-875
%V 50
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a6/
%G ru
%F ZVMMF_2010_50_5_a6
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Finite-dimensional models of diffusion chaos. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 860-875. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a6/

[1] Nikolis G., Prigozhin I., Samoorganizatsiya v neravnovesnykh sistemakh, Mir, M., 1979

[2] Akhromeeva T. S., Kurdyumov S. P., Malinetskii G. G., Samarskii A. A., Struktury i khaos v nelineinykh sredakh, Fizmatlit, M., 2007 | Zbl

[3] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005

[4] Kolesov A. Yu., Kolesov Yu. S., Maiorov V. V., “Reaktsiya Belousova: matematicheskaya model i eksperimentalnye fakty”, Dinamika biologich. populyatsii, GGU, Gorkii, 1987, 43–51

[5] Hutchinson G. E., “Circular causal systems in ecology”, Ann. N. Y. Acad. Sci., 50 (1948), 221–246 | DOI

[6] Kolesov Yu. S., Problema adekvatnosti ekologicheskikh uravnenii, Yaroslavl, 1985; Деп. в ВИНИТИ, 1985No 1901-85

[7] Kolesov A. Yu., Rozov N. Kh., “K voprosu ob opredelenii khaosa”, Uspekhi matem. nauk, 64:4(388) (2009), 125–172 | MR | Zbl

[8] Frederickson P., Kaplan J., Yorke J., “The Lyapunov dimension of strange attractors”, J. Different. Equat., 49:2 (1983), 185–207 | DOI | MR | Zbl

[9] Arnold V. I., Khesin B. A., Topologicheskie metody v gidrodinamike, MTsNMO, M., 2007

[10] Kolesov A. Yu., Rozov N. Kh., Sadovnichii V. A., “Matematicheskie aspekty teorii razvitiya turbulentnosti po Landau”, Uspekhi matem. nauk, 63:2(380) (2008), 21–84 | MR | Zbl

[11] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “K voprosu o realizuemosti stsenariya razvitiya turbulentnosti po Landau”, Teoretich. i matem. fiz., 427:4 (2009), 292–311 | MR

[12] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya. Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003

[13] Rabinovich M. I., Fabrikant A. L., Tsimring L. Sh., “Konechnomernyi prostranstvennyi besporyadok”, Uspekhi fiz. nauk, 162:8 (1992), 1–42

[14] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[15] Kolesov A. Yu., “Opisanie fazovoi neustoichivosti sistemy garmonicheskikh ostsillyatorov, slabo svyazannykh cherez diffuziyu”, Dokl. AN SSSR, 300:4 (1988), 831–835 | MR

[16] Glyzin S. D., “Chislennoe obosnovanie gipotezy Landau–Kolesova o prirode turbulentnosti”, Matem. metody v biologii i meditsine, 3, In-t matem. i kibernetiki AN LitSSR, Vilnyus, 1989, 31–36 | MR | Zbl

[17] Kolesov A. Yu., Kolesov Yu. S., “Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii”, Tr. MI RAN, 199, M., 1993, 3–125 | MR | Zbl

[18] Kolesov Yu. S., “Zadacha parazit-khozyain”, Dinamika biologich. populyatsii, GGU, Gorkii, 1984, 28–34 | MR

[19] Kolesov A. Yu., “Ob ustoichivosti prostranstvenno odnorodnogo tsikla uravneniya Khatchinsona s diffuziei”, Matem. metody v biologii i meditsine, 1, In-t matem. i kibernetiki, Vilnyus, 1985, 93–102 | MR | Zbl

[20] Glyzin S. D., “Statsionarnye rezhimy odnoi konechno-raznostnoi approksimatsii uravneniya Khatchinsona s diffuziei”, Kachestvennye i priblizhennye metody issled. operatornykh uravnenii, YarGU, Yaroslavl, 1986, 112–127 | MR

[21] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[22] Kolesov Yu. S., “Matematicheskie modeli ekologii”, Issled. po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1979, 3–40 | MR | Zbl

[23] Mischenko E. F., Kolesov A. Yu., “Asimptoticheskaya teoriya relaksatsionnykh kolebanii”, Tr. MI RAN, 197, M., 1991, 3–84