Finite-dimensional models of diffusion chaos
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 860-875

Voir la notice de l'article provenant de la source Math-Net.Ru

Some parabolic systems of the reaction-diffusion type exhibit the phenomenon of diffusion chaos. Specifically, when the diffusivities decrease proportionally, while the other parameters of a system remain fixed, the system exhibits a chaotic attractor whose dimension increases indefinitely. Various finite-dimensional models of diffusion chaos are considered that represent chains of coupled ordinary differential equations and similar chains of discrete mappings. A numerical analysis suggests that these chains with suitably chosen parameters exhibit chaotic attractors of arbitrarily high dimensions.
@article{ZVMMF_2010_50_5_a6,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Finite-dimensional models of diffusion chaos},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {860--875},
     publisher = {mathdoc},
     volume = {50},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a6/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Finite-dimensional models of diffusion chaos
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 860
EP  - 875
VL  - 50
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a6/
LA  - ru
ID  - ZVMMF_2010_50_5_a6
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Finite-dimensional models of diffusion chaos
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 860-875
%V 50
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a6/
%G ru
%F ZVMMF_2010_50_5_a6
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Finite-dimensional models of diffusion chaos. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 860-875. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a6/