Improvement of extreme controls and the steepest ascent method in the norm maximization problem on the reachable set
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 848-859 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The maximization of the terminal state norm of a linear system is considered in the sense of searching for and improving extreme points of the reachable set. A sufficient optimality condition is formulated in terms of a special maximum function. A steepest ascent method for level surfaces of the objective function is constructed, and related procedures for improving extreme controls are described.
@article{ZVMMF_2010_50_5_a5,
     author = {V. A. Srochko and S. N. Ushakova},
     title = {Improvement of extreme controls and the steepest ascent method in the norm maximization problem on the reachable set},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {848--859},
     year = {2010},
     volume = {50},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a5/}
}
TY  - JOUR
AU  - V. A. Srochko
AU  - S. N. Ushakova
TI  - Improvement of extreme controls and the steepest ascent method in the norm maximization problem on the reachable set
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 848
EP  - 859
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a5/
LA  - ru
ID  - ZVMMF_2010_50_5_a5
ER  - 
%0 Journal Article
%A V. A. Srochko
%A S. N. Ushakova
%T Improvement of extreme controls and the steepest ascent method in the norm maximization problem on the reachable set
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 848-859
%V 50
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a5/
%G ru
%F ZVMMF_2010_50_5_a5
V. A. Srochko; S. N. Ushakova. Improvement of extreme controls and the steepest ascent method in the norm maximization problem on the reachable set. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 848-859. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a5/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968 | MR

[3] Gabasov R., Kirillova F. M., Optimizatsiya lineinykh sistem, Izd-vo Belorussk. un-ta, Minsk, 1973 | MR

[4] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vuzov. Matematika, 2009, no. 1, 3–43 | MR | Zbl

[5] Aleksandrov V. V., Boltyanskii V. G., Lemak S. S. i dr., Optimalnoe upravlenie dvizheniem, Fizmatlit, M., 2005

[6] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov, Nauka, M., 1988 | MR

[7] Strekalovskii A. S., “O nevypuklykh zadachakh optimalnogo upravleniya”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1993, no. 1, 9–13 | MR

[8] Clarke F. H., Hirriart-Urruty J. B., Ledyaev Yu. S., “On global optimality conditions for nonlinear optimal control problems”, J. Global Optimizat., 1998, no. 13, 109–122 | DOI | MR | Zbl

[9] Strekalovskii A. S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[10] Enkhbat R., “On some theory, methods and algorithms for concave programming”, Optimizat. and Optimal Control, World Scient. Publ. Co., 2003, 79–102 | MR | Zbl

[11] Antonik V. G., Srochko V. A., “Metod nelokalnogo uluchsheniya ekstremalnykh upravlenii v zadache na maksimum normy konechnogo sostoyaniya”, Zh. vychisl. matem. i matem. fiz., 49:5 (2009), 791–804 | MR | Zbl

[12] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[13] Sukharev A. G., Timokhov A. V., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR | Zbl