The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1416-1436
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The Dirichlet problem for a singularly perturbed parabolic reaction-diffusion equation with a piecewise continuous initial condition in a rectangular domain is considered. The higher order derivative in the equation is multiplied by a parameter $\varepsilon^2$, where $\varepsilon\in(0,1]$. When $\varepsilon$ is small, a boundary and an interior layer (with the characteristic width $\varepsilon$) appear, respectively, in a neighborhood of the lateral part of the boundary and in a neighborhood of the characteristic of the reduced equation passing through the discontinuity point of the initial function; for fixed $\varepsilon$, these layers have limited smoothness. Using the method of additive splitting of singularities (induced by the discontinuities of the initial function and its low-order derivatives) and the condensing grid method (piecewise uniform grids that condense in a neighborhood of the boundary layers), a finite difference scheme is constructed that converges $\varepsilon$-uniformly at a rate of $O(N^{-2}\ln^2+N_0^{-1})$, where $N+1$ and $N_0+1$ are the numbers of the mesh points in $x$ and $t$, respectively. Based on the Richardson technique, a scheme that converges $\varepsilon$-uniformly at a rate of $ON^{-3}+N_0^{-2})$ is constructed. It is proved that the Richardson technique cannot construct a scheme that converges in $\varepsilon$-uniformly in $x$ with an order greater than three.
            
            
            
          
        
      @article{ZVMMF_2009_49_8_a5,
     author = {G. I. Shishkin},
     title = {The {Richardson} scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a~discontinuous initial condition},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1416--1436},
     publisher = {mathdoc},
     volume = {49},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a5/}
}
                      
                      
                    TY - JOUR AU - G. I. Shishkin TI - The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1416 EP - 1436 VL - 49 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a5/ LA - ru ID - ZVMMF_2009_49_8_a5 ER -
%0 Journal Article %A G. I. Shishkin %T The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1416-1436 %V 49 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a5/ %G ru %F ZVMMF_2009_49_8_a5
G. I. Shishkin. The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1416-1436. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a5/
