The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1416-1436 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet problem for a singularly perturbed parabolic reaction-diffusion equation with a piecewise continuous initial condition in a rectangular domain is considered. The higher order derivative in the equation is multiplied by a parameter $\varepsilon^2$, where $\varepsilon\in(0,1]$. When $\varepsilon$ is small, a boundary and an interior layer (with the characteristic width $\varepsilon$) appear, respectively, in a neighborhood of the lateral part of the boundary and in a neighborhood of the characteristic of the reduced equation passing through the discontinuity point of the initial function; for fixed $\varepsilon$, these layers have limited smoothness. Using the method of additive splitting of singularities (induced by the discontinuities of the initial function and its low-order derivatives) and the condensing grid method (piecewise uniform grids that condense in a neighborhood of the boundary layers), a finite difference scheme is constructed that converges $\varepsilon$-uniformly at a rate of $O(N^{-2}\ln^2+N_0^{-1})$, where $N+1$ and $N_0+1$ are the numbers of the mesh points in $x$ and $t$, respectively. Based on the Richardson technique, a scheme that converges $\varepsilon$-uniformly at a rate of $ON^{-3}+N_0^{-2})$ is constructed. It is proved that the Richardson technique cannot construct a scheme that converges in $\varepsilon$-uniformly in $x$ with an order greater than three.
@article{ZVMMF_2009_49_8_a5,
     author = {G. I. Shishkin},
     title = {The {Richardson} scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a~discontinuous initial condition},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1416--1436},
     year = {2009},
     volume = {49},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a5/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1416
EP  - 1436
VL  - 49
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a5/
LA  - ru
ID  - ZVMMF_2009_49_8_a5
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1416-1436
%V 49
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a5/
%G ru
%F ZVMMF_2009_49_8_a5
G. I. Shishkin. The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1416-1436. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a5/

[1] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, RAN, UrO, Ekaterinburg, 1992

[2] Farrell P. A., Hegarty A. F., Miller J. J. H. et al., Robust computational techniques for boundary layers, Chapman and Hall/CRC, Boca Raton, 2000 | MR | Zbl

[3] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical Methods for singular perturbation problems, World Scientific, Singapore, 1996 | MR

[4] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems, Springer, Berlin, 1996 | MR

[5] Hemker P. W., Shishkin G. I., Shishkina L. P., “High-order time-accurate schemes for parabolic singular perturbation problems with convection”, Rus. J. Numer. Analys. Math. Modelling, 17:1 (2002), 1–24

[6] Hemker P. W., Shishkin G. I., Shishkina L. P., “Novel defect-correction high-order, in space and time, accurate schemes for parabolic singularly perturbed convection-diffusion problems”, Comput. Meth. Appl. Math., 3:3 (2003), 387–404 | MR

[7] Hemker P. W., Shishkin G. I., Shishkina L. P., “High-order accurate decomposition of Richardson's method for a singularly perturbed elliptic reaction-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 44:2 (2004), 328–336

[8] Shishkin G. I., Shishkina L. P., “Metod Richardsona vysokogo poryadka tochnosti dlya kvazilineinogo singulyarno vozmuschennogo ellipticheskogo uravneniya reaktsii-diffuzii”, Differents. ur-niya, 41:7 (2005), 980–989 | MR | Zbl

[9] Shishkin G. I., “Robust novel high-order accurate numerical methods for singularly perturbed convection-diffusion problems”, Math. Modelling and Analys, 10:4 (2005), 393–412 | MR | Zbl

[10] Kolmogorov V. L., Shishkin G. I., “Numerical methods for singularly perturbed boundary value problems modeling diffusion processes”, Singular Perturbation Problems in Chem. Phys., Advances in Chem. Phys. Ser. V, XCVII, J. Wiley Sons, 1997, 181–362

[11] Li S., Shishkin G., Shishkina L., “Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data”, Comput. Math. Math. Phys., 47:3 (2007), 442–462 | DOI | MR | Zbl

[12] Shishkin G. I., “Setochnaya approksimatsiya parabolicheskikh uravnenii konvektsii-diffuzii s kusochno-gladkimi nachalnymi usloviyami”, Dokl. RAN, 405:1 (2005), 30–34 | MR | Zbl

[13] Shishkin T. N., “Setochnaya approksimatsiya singulyarno vozmuschennykh parabolicheskikh uravnenii konvektsii-diffuzii s kusochno-gladkim nachalnym usloviem”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 52–76 | MR | Zbl

[14] Shishkin G. I., “Grid approximation of singularly perturbed parabolic reaction-diffusion equations with piecewise smooth initial-boundary conditions”, Math. Modelling and Analys, 12:2 (2007), 235–254 | DOI | MR | Zbl

[15] Bakhvalov H. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[16] Shishkin G. I., “Raznostnaya skhema dlya singulyarno vozmuschennogo uravneniya parabolicheskogo tipa s razryvnym granichnym usloviem”, Zh. vychisl. matem. i matem. fiz., 28:11 (1988), 1649–1662 | MR

[17] Shishkin G. I., “Raznostnaya skhema dlya singulyarno vozmuschennogo uravneniya parabolicheskogo tipa s razryvnym nachalnym usloviem”, Dokl. AN SSSR, 300:5 (1988), 1066–1070 | Zbl

[18] Hemker P. W., Shishkin G. I., “Discrete approximation of singularly perturbed parabolic PDEs with a discontinuous initial condition”, Comput. Fluid Dynamics Journal, 2:4 (1994), 375–392

[19] Shishkin G. I., “Approksimatsiya reshenii i diffuzionnykh potokov v sluchae singulyarno vozmuschennykh kraevykh zadach s razryvnymi nachalnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 36:9 (1996), 83–104 | MR | Zbl

[20] Shishkin G. I., “Singulyarno vozmuschennye kraevye zadachi s sosredotochennymi istochnikam i razryvnymi nachalnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 37:4 (1997), 429–446 | MR | Zbl

[21] Shishkin G. I., “Grid approximation of singularly perturbed parabolic equaitons with piecewise continuous initialboundary conditions”, Proc. Steklov Inst. Math. Moscow, 259, Suppl. 2, 2007, S213–S230

[22] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[23] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[24] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[25] Shishkin G. I., “Approksimatsiya reshenii singulyarno vozmuschennykh kraevykh zadach s parabolicheskim pogranichnym sloem”, Zh. vychisl. matem. i matem. fiz., 29:7 (1989), 963–977 | MR

[26] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Monographs Surveys in Pure Appl. Math., Chapman and Hall/CRC, 2009 | MR | Zbl

[27] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennoi kraevoi zadachi dlya kvazilineinogo ellipticheskogo uravneniya v sluchae polnogo vyrozhdeniya”, Zh. vychisl. matem. i matem. fiz., 31:12 (1991), 1808–1825 | MR | Zbl

[28] Shishkin G. I., “Grid approximation of singularly perturbed boundary value problems for quasi-linear parabolic equations in case in complete degeneracy in spatial variables”, Sov. J. Numer. Analys. Math. Modelling, 6:3 (1991), 243–261 | DOI | MR | Zbl

[29] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[30] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR | Zbl

[31] Shishkin G. I., “Povyshenie tochnosti reshenii raznostnykh skhem dlya parabolicheskikh uravnenii s malym parametrom pri starshei proizvodnoi”, Zh. vychisl. matem. i matem. fiz., 24:6 (1984), 864–875 | MR | Zbl