Solution of the Cameron–Erdős problem for groups of prime order
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1503-1509
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A subset $A$ of a group $G$ is sum-free if $a+b$ does not belong to $A$ for any $a,b\in A$. Asymptotics of the number of sum-free sets in groups of prime order are proved.
            
            
            
          
        
      @article{ZVMMF_2009_49_8_a12,
     author = {A. A. Sapozhenko},
     title = {Solution of the {Cameron{\textendash}Erd\H{o}s} problem for groups of prime order},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1503--1509},
     publisher = {mathdoc},
     volume = {49},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a12/}
}
                      
                      
                    TY - JOUR AU - A. A. Sapozhenko TI - Solution of the Cameron–Erdős problem for groups of prime order JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1503 EP - 1509 VL - 49 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a12/ LA - ru ID - ZVMMF_2009_49_8_a12 ER -
A. A. Sapozhenko. Solution of the Cameron–Erdős problem for groups of prime order. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1503-1509. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a12/
