Solution of the Cameron–Erdős problem for groups of prime order
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1503-1509 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A subset $A$ of a group $G$ is sum-free if $a+b$ does not belong to $A$ for any $a,b\in A$. Asymptotics of the number of sum-free sets in groups of prime order are proved.
@article{ZVMMF_2009_49_8_a12,
     author = {A. A. Sapozhenko},
     title = {Solution of the {Cameron{\textendash}Erd\H{o}s} problem for groups of prime order},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1503--1509},
     year = {2009},
     volume = {49},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a12/}
}
TY  - JOUR
AU  - A. A. Sapozhenko
TI  - Solution of the Cameron–Erdős problem for groups of prime order
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1503
EP  - 1509
VL  - 49
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a12/
LA  - ru
ID  - ZVMMF_2009_49_8_a12
ER  - 
%0 Journal Article
%A A. A. Sapozhenko
%T Solution of the Cameron–Erdős problem for groups of prime order
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1503-1509
%V 49
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a12/
%G ru
%F ZVMMF_2009_49_8_a12
A. A. Sapozhenko. Solution of the Cameron–Erdős problem for groups of prime order. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1503-1509. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a12/

[1] Cameron P. J., Erdős P., “On the number of sets of integers with various properties”, Number Theory (Banff, AB, 1988), de Gruyter, Berlin, 1990, 61–79 | MR

[2] Alon N., “Independent sets in regular graphs and sum-free subsets of abelian groups”, Israel J. Math., 73 (1991), 247–256 | DOI | MR | Zbl

[3] Calkin N., “On the number of sum-free set”, Bull. London Math. Soc., 22 (1990), 141–144 | DOI | MR | Zbl

[4] Green B. J., “The Cameron–Erdos conjecture”, Bull. London Math. Soc., 36:6 (2004), 769–778 | DOI | MR | Zbl

[5] Sapozhenko A. A., “Gipoteza Kamerona–Erdësha”, Dokl. RAN, 393:6 (2003), 749–752 | MR

[6] Sapozhenko A. A., “Verkhnyaya otsenka chisla nezavisimykh mnozhestv v grafakh”, Dokl. RAN, 414:6 (2007), 743–744

[7] Omelyanov K. G., “Otsenki konstant Kamerona–Erdësha”, Diskretnaya matem., 18:2 (2006), 55–70 | MR

[8] Lev V. F., Schoen T., “Cameron–Erdős modulo a prime”, Finite Fields Appl., 8:1 (2002), 108–119 | DOI | MR | Zbl

[9] Lev V. F., Łuczak T., Schoen T., “Sum-free sets in abelian groups”, Israel J. Math., 125 (2001), 347–367 | DOI | MR | Zbl

[10] Sapozhenko A. A., “Asimptotika chisla mnozhestv, svobodnykh ot summ, v abelevykh gruppakh chetnogo poryadka”, Dokl. RAN, 383:4 (2002), 454–457 | MR | Zbl

[11] Green B., Ruzsa I. Z., “Sum-free sets in abelian groups”, Israel J. Math., 147 (2005), 157–189 | DOI | MR

[12] Green B., Ruzsa I. Z., “Counting sum-sets and sum-free sets modulo a prime”, Studia Sci. Math. Hungarica, 41:3 (2004), 285–293 | DOI | MR | Zbl

[13] Petrosyan T. G., “O chisle mnozhestv, svobodnykh ot proizvedenii, v gruppakh chetnogo poryadka”, Diskretnaya matem., 17:1 (2005), 89–101 | MR | Zbl

[14] Deshouillers J.-M., Lev V. F., “Refined bound for sum-free sets in groups of prime order”, Bull. London Math. Soc., 40:5 (2008), 863–875 | DOI | MR | Zbl

[15] Lev V. F., “Large sum-free sets in $Z/Z_p$”, Israel J. Math., 154 (2006), 221–234 | DOI | MR

[16] Deshouillers J.-M., Freiman G. A., “On sum-free sets modulo $p$”, Functiones et Approximatio, 35 (2006), 7–15 | MR