@article{ZVMMF_2009_49_8_a12,
author = {A. A. Sapozhenko},
title = {Solution of the {Cameron{\textendash}Erd\H{o}s} problem for groups of prime order},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1503--1509},
year = {2009},
volume = {49},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a12/}
}
TY - JOUR AU - A. A. Sapozhenko TI - Solution of the Cameron–Erdős problem for groups of prime order JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1503 EP - 1509 VL - 49 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a12/ LA - ru ID - ZVMMF_2009_49_8_a12 ER -
A. A. Sapozhenko. Solution of the Cameron–Erdős problem for groups of prime order. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1503-1509. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a12/
[1] Cameron P. J., Erdős P., “On the number of sets of integers with various properties”, Number Theory (Banff, AB, 1988), de Gruyter, Berlin, 1990, 61–79 | MR
[2] Alon N., “Independent sets in regular graphs and sum-free subsets of abelian groups”, Israel J. Math., 73 (1991), 247–256 | DOI | MR | Zbl
[3] Calkin N., “On the number of sum-free set”, Bull. London Math. Soc., 22 (1990), 141–144 | DOI | MR | Zbl
[4] Green B. J., “The Cameron–Erdos conjecture”, Bull. London Math. Soc., 36:6 (2004), 769–778 | DOI | MR | Zbl
[5] Sapozhenko A. A., “Gipoteza Kamerona–Erdësha”, Dokl. RAN, 393:6 (2003), 749–752 | MR
[6] Sapozhenko A. A., “Verkhnyaya otsenka chisla nezavisimykh mnozhestv v grafakh”, Dokl. RAN, 414:6 (2007), 743–744
[7] Omelyanov K. G., “Otsenki konstant Kamerona–Erdësha”, Diskretnaya matem., 18:2 (2006), 55–70 | MR
[8] Lev V. F., Schoen T., “Cameron–Erdős modulo a prime”, Finite Fields Appl., 8:1 (2002), 108–119 | DOI | MR | Zbl
[9] Lev V. F., Łuczak T., Schoen T., “Sum-free sets in abelian groups”, Israel J. Math., 125 (2001), 347–367 | DOI | MR | Zbl
[10] Sapozhenko A. A., “Asimptotika chisla mnozhestv, svobodnykh ot summ, v abelevykh gruppakh chetnogo poryadka”, Dokl. RAN, 383:4 (2002), 454–457 | MR | Zbl
[11] Green B., Ruzsa I. Z., “Sum-free sets in abelian groups”, Israel J. Math., 147 (2005), 157–189 | DOI | MR
[12] Green B., Ruzsa I. Z., “Counting sum-sets and sum-free sets modulo a prime”, Studia Sci. Math. Hungarica, 41:3 (2004), 285–293 | DOI | MR | Zbl
[13] Petrosyan T. G., “O chisle mnozhestv, svobodnykh ot proizvedenii, v gruppakh chetnogo poryadka”, Diskretnaya matem., 17:1 (2005), 89–101 | MR | Zbl
[14] Deshouillers J.-M., Lev V. F., “Refined bound for sum-free sets in groups of prime order”, Bull. London Math. Soc., 40:5 (2008), 863–875 | DOI | MR | Zbl
[15] Lev V. F., “Large sum-free sets in $Z/Z_p$”, Israel J. Math., 154 (2006), 221–234 | DOI | MR
[16] Deshouillers J.-M., Freiman G. A., “On sum-free sets modulo $p$”, Functiones et Approximatio, 35 (2006), 7–15 | MR