Identification problem for a stationary magnetohydrodynamic model of a viscous heat-conducting fluid
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 10, pp. 1796-1811
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An identification problem for the stationary magnetohydrodynamic (MHD) equations governing a viscous heat-conducting fluid with inhomogeneous boundary conditions for the velocity, electromagnetic field, and temperature is stated and analyzed. The solvability of the problem is proved, an optimality system is derived, and sufficient conditions on the initial data are established that ensure the uniqueness and stability of the solution.
@article{ZVMMF_2009_49_10_a6,
     author = {G. V. Alekseev and D. A. Tereshko},
     title = {Identification problem for a~stationary magnetohydrodynamic model of a~viscous heat-conducting fluid},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1796--1811},
     year = {2009},
     volume = {49},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a6/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - D. A. Tereshko
TI  - Identification problem for a stationary magnetohydrodynamic model of a viscous heat-conducting fluid
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1796
EP  - 1811
VL  - 49
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a6/
LA  - ru
ID  - ZVMMF_2009_49_10_a6
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A D. A. Tereshko
%T Identification problem for a stationary magnetohydrodynamic model of a viscous heat-conducting fluid
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1796-1811
%V 49
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a6/
%G ru
%F ZVMMF_2009_49_10_a6
G. V. Alekseev; D. A. Tereshko. Identification problem for a stationary magnetohydrodynamic model of a viscous heat-conducting fluid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 10, pp. 1796-1811. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a6/

[1] Hou L. S., Meir A. J., “Boundary optimal control of MHD flows”, Appl. Math. Optimizat., 32 (1995), 143–162 | DOI | MR | Zbl

[2] Alekseev G. V., “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti”, Prikl. mekhan. i tekhn. fiz., 44:6 (2003), 170–179 | MR | Zbl

[3] Alekseev G. V., “Razreshimost zadach upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti”, Sibirskii matem. zhurnal, 45:2 (2004), 243–263 | MR | Zbl

[4] Griesse R., Kunish K., A practical optimal control approach to the stationary MHD system in velocity current formulation, Rpt: RICAM 2005-02, Johann Radon Inst. for Comput. and Appl. Math., Linz, 2005

[5] Alekseev G. V., Brizitskii R. V., “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti so smeshannymi granichnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2131–2147 | MR | Zbl

[6] Alekseev G. V., “Zadachi upravleniya dlya statsionarnoi modeli magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Uspekhi mekhan., 2 (2006), 66–116

[7] Alekseev G. V., “Kraevye zadachi i zadachi upravleniya dlya statsionarnoi modeli magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Dokl. RAN, 405:6 (2005), 744–748 | MR

[8] Gunzburger M., Trenchea C., “Analysis of an optimal control problem for the three-dimensional coupled modified Navier–Stokes and Maxwell equations”, J. Math. Analys. Appl., 333 (2007), 295–310 | DOI | MR | Zbl

[9] Gunzburger M., Peterson J., Trenchea C., “The velocity tracking problem for MHD flows with distributed magnetic field controls”, Internat. J. Pure Appl. Math., 42:2 (2008), 289–296 | MR

[10] Alekseev G. V., “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplovoi konvektsii”, Vestn. Novosibirskogo un-ta. Ser. matem., mekhan., informatiki, 6:2 (2006), 6–32

[11] Alekseev G. V., “Koeffitsientnye obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 1055–1076

[12] Alekseev G. V., Soboleva O. V., Tereshko D. A., “Zadachi identifikatsii dlya statsionarnoi modeli massoperenosa”, Prikl. mekhan. i tekhn. fiz., 49:4 (2008), 24–35 | MR

[13] Alekseev G. V., “Razreshimost kraevoi zadachi dlya statsionarnoi modeli magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Sibirskii zh. industr. matem., 9:1 (2006), 13–27 | MR

[14] Meir A. J., Schmidt P. G., “On electromagnetically and thermally driven liquid-metal flows”, Nonlinear Analys, 47 (2001), 3281–3294 | DOI | MR | Zbl

[15] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v zadachakh gidrodinamiki vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008

[16] Girault V., Raviart P. A., Finite element methods for Navier–Stokes equations. Theory and algorithms, Springer, Berlin, 1986 | MR | Zbl

[17] Alonso A., Valli A., “Some remarks on the characterization of the space of tangential traces of $H(\mathrm{rot};\Omega)$ and the construction of the extension operator”, Manuscript Math., 89 (1996), 159–178 | DOI | MR | Zbl

[18] Valli A., Orthogonal decompositions of $\mathbf L^2(\Omega)^3$, Preprint UTM 493, Dept. Math. Univ. of Toronto, Galamen, 1995

[19] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred. T. 8. Teoreticheskaya fizika, Nauka, M., 1982 | MR

[20] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[21] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973