@article{ZVMMF_2009_49_10_a6,
author = {G. V. Alekseev and D. A. Tereshko},
title = {Identification problem for a~stationary magnetohydrodynamic model of a~viscous heat-conducting fluid},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1796--1811},
year = {2009},
volume = {49},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a6/}
}
TY - JOUR AU - G. V. Alekseev AU - D. A. Tereshko TI - Identification problem for a stationary magnetohydrodynamic model of a viscous heat-conducting fluid JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1796 EP - 1811 VL - 49 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a6/ LA - ru ID - ZVMMF_2009_49_10_a6 ER -
%0 Journal Article %A G. V. Alekseev %A D. A. Tereshko %T Identification problem for a stationary magnetohydrodynamic model of a viscous heat-conducting fluid %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1796-1811 %V 49 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a6/ %G ru %F ZVMMF_2009_49_10_a6
G. V. Alekseev; D. A. Tereshko. Identification problem for a stationary magnetohydrodynamic model of a viscous heat-conducting fluid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 10, pp. 1796-1811. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a6/
[1] Hou L. S., Meir A. J., “Boundary optimal control of MHD flows”, Appl. Math. Optimizat., 32 (1995), 143–162 | DOI | MR | Zbl
[2] Alekseev G. V., “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti”, Prikl. mekhan. i tekhn. fiz., 44:6 (2003), 170–179 | MR | Zbl
[3] Alekseev G. V., “Razreshimost zadach upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti”, Sibirskii matem. zhurnal, 45:2 (2004), 243–263 | MR | Zbl
[4] Griesse R., Kunish K., A practical optimal control approach to the stationary MHD system in velocity current formulation, Rpt: RICAM 2005-02, Johann Radon Inst. for Comput. and Appl. Math., Linz, 2005
[5] Alekseev G. V., Brizitskii R. V., “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti so smeshannymi granichnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2131–2147 | MR | Zbl
[6] Alekseev G. V., “Zadachi upravleniya dlya statsionarnoi modeli magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Uspekhi mekhan., 2 (2006), 66–116
[7] Alekseev G. V., “Kraevye zadachi i zadachi upravleniya dlya statsionarnoi modeli magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Dokl. RAN, 405:6 (2005), 744–748 | MR
[8] Gunzburger M., Trenchea C., “Analysis of an optimal control problem for the three-dimensional coupled modified Navier–Stokes and Maxwell equations”, J. Math. Analys. Appl., 333 (2007), 295–310 | DOI | MR | Zbl
[9] Gunzburger M., Peterson J., Trenchea C., “The velocity tracking problem for MHD flows with distributed magnetic field controls”, Internat. J. Pure Appl. Math., 42:2 (2008), 289–296 | MR
[10] Alekseev G. V., “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplovoi konvektsii”, Vestn. Novosibirskogo un-ta. Ser. matem., mekhan., informatiki, 6:2 (2006), 6–32
[11] Alekseev G. V., “Koeffitsientnye obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 1055–1076
[12] Alekseev G. V., Soboleva O. V., Tereshko D. A., “Zadachi identifikatsii dlya statsionarnoi modeli massoperenosa”, Prikl. mekhan. i tekhn. fiz., 49:4 (2008), 24–35 | MR
[13] Alekseev G. V., “Razreshimost kraevoi zadachi dlya statsionarnoi modeli magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Sibirskii zh. industr. matem., 9:1 (2006), 13–27 | MR
[14] Meir A. J., Schmidt P. G., “On electromagnetically and thermally driven liquid-metal flows”, Nonlinear Analys, 47 (2001), 3281–3294 | DOI | MR | Zbl
[15] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v zadachakh gidrodinamiki vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008
[16] Girault V., Raviart P. A., Finite element methods for Navier–Stokes equations. Theory and algorithms, Springer, Berlin, 1986 | MR | Zbl
[17] Alonso A., Valli A., “Some remarks on the characterization of the space of tangential traces of $H(\mathrm{rot};\Omega)$ and the construction of the extension operator”, Manuscript Math., 89 (1996), 159–178 | DOI | MR | Zbl
[18] Valli A., Orthogonal decompositions of $\mathbf L^2(\Omega)^3$, Preprint UTM 493, Dept. Math. Univ. of Toronto, Galamen, 1995
[19] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred. T. 8. Teoreticheskaya fizika, Nauka, M., 1982 | MR
[20] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[21] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973