@article{ZVMMF_2008_48_3_a4,
author = {G. K. Kamenev},
title = {Duality theory of optimal adaptive methods for polyhedral approximation of convex bodies},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {397--417},
year = {2008},
volume = {48},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a4/}
}
TY - JOUR AU - G. K. Kamenev TI - Duality theory of optimal adaptive methods for polyhedral approximation of convex bodies JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 397 EP - 417 VL - 48 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a4/ LA - ru ID - ZVMMF_2008_48_3_a4 ER -
%0 Journal Article %A G. K. Kamenev %T Duality theory of optimal adaptive methods for polyhedral approximation of convex bodies %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 397-417 %V 48 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a4/ %G ru %F ZVMMF_2008_48_3_a4
G. K. Kamenev. Duality theory of optimal adaptive methods for polyhedral approximation of convex bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 397-417. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a4/
[1] Minkowski H., “Volumen und Oberflache”, Math. Ann., 57 (1903), 447–496 | DOI | MR
[2] Gruber P. M., “Aspects of approximation of convex bodies”, Handbook of convex geometry, v. A, B, North-Holland, Amsterdam, 1993, 319–345 | MR | Zbl
[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969
[4] Lotov A. B., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[5] Lotov A. V., Bushenkov V. A., Kamenev G. K., Feasible coals method search for smart decisions, VTs PAH, M., 2001
[6] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and visualization of pareto frontier, Appl. Optimizat., 89, Kluwer Acad. Publs., Boston etc., 2004 | MR | Zbl
[7] Kamenev G. K., “Ob odnom klasse adaptivnykh skhem approksimatsii vypuklykh tel mnogogrannikami”, Matem. modelirovanie i diskretnaya optimizatsiya, VTs AN SSSR, M., 1988, 3–9 | MR
[8] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR
[9] Kamenev G. K., “Sopryazhennye adaptivnye algoritmy poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 42:9 (2002), 1351–1367 | MR | Zbl
[10] Kamenev G. K., “Ob effektivnosti khausdorfovykh algoritmov vnutrennei poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 33:5 (1993), 796–805 | MR | Zbl
[11] Kamenev G. K., “Effektivnye algoritmy approksimatsii negladkikh vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 446–450 | MR | Zbl
[12] Kamenev G. K., “Ob approksimatsionnykh svoistvakh negladkikh vypuklykh diskov”, Zh. vychisl. matem. i matem. fiz., 40:10 (2000), 1464–1474 | MR | Zbl
[13] Efremov R. V., Kamenev G. K., “Apriornaya otsenka asimptoticheskoi effektivnosti odnogo klassa algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 23–32 | MR | Zbl
[14] Kamenev G. K., “Metod poliedralnoi approksimatsii vypuklykh tel, optimalnyi po poryadku chisla raschetov opornoi i distantsionnoi funktsii”, Dokl. RAN, 388:3 (2003), 309–311 | MR
[15] Kamenev G. K., “Samodvoistvennye adaptivnye algoritmy poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 43:8 (2003), 1123–1137 | MR | Zbl
[16] Efremov R. V., “Apriornaya otsenka effektivnosti adaptivnykh algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 149–160 | MR
[17] Kamenev G. K., Issledovanie iteratsionnykh metodov approksimatsii vypuklykh mnozhestv mnogogrannikami, VTs AN SSSR, M., 1986
[18] Dzholdybaeva S. M., Kamenev G. K., “Chislennoe issledovanie effektivnosti algoritma approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:6 (1992), 857–866 | MR | Zbl
[19] Burmistrova L. V., “Eksperimentalnyi analiz novogo adaptivnogo metoda poliedralnoi approksimatsii mnogomernykh vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 43:3 (2003), 328–346 | MR | Zbl
[20] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR
[21] Kamenev G. K., Metody approksimatsii vypuklykh tel mnogogrannikami i ikh primenenie dlya postroeniya i analiza obobschennykh mnozhestv dostizhimosti, Dis. $\dots$ kand. fiz.-matem. nauk, MFTI, M., 1986, 219 pp.
[22] Button L., Wilker J.-B., “Cutting exponents for polyhedral approximations to convex bodies”, Geometriac Dedicata, 7:4 (1978), 417–430 | MR
[23] Bronshtein E. M., Ivanov L. D., “O priblizhenii vypuklykh mnozhestv mnogogrannikami”, Sibirskii matem. zhurnal, 26:5 (1975), 1110–1112
[24] Dudley R., “Metric entropy of some classes of sets with differentiable boundaries”, J. Approximat. Theory, 10 (1974), 227–236 ; Corr., ibid 26 (1979), 192–193 | DOI | MR | Zbl | DOI | MR | Zbl
[25] Schneider R., Wieacker J. A., “Approximation of convex bodies by polytopes”, Bull. London Math. Soc., 13 (1981), 149–156 | DOI | MR | Zbl
[26] Brusnikina N. B., Kamenev G. K., “O slozhnosti i metodakh poliedralnoi approksimatsii vypuklykh tel s chastichno gladkoi granitsei”, Zh. vychisl. matem. i matem. fiz., 45:9 (2005), 1555–1565 | MR | Zbl
[27] Kamenev G. K., “Issledovanie odnogo algoritma approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 608–616 | MR | Zbl
[28] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[29] Schneider R., Convex bodies: the Brunn–Minkowski theory, Cambridge, 1993 | MR
[30] Blyashke V., Krug i shar, Nauka, M., 1967 | MR
[31] Koutroufiotis D., “On Blaschke's rolling theorems”, Arch. Math., 23 (1972), 655–660 | DOI | MR | Zbl
[32] Schneider R., “Closed convex hypersurfaces with curvature restrictions”, Proc. Amer. Math. Soc., 103 (1988), 1201–1204 | DOI | MR | Zbl
[33] Brooks I. N., Strantzen J. B., Blaschke's rolling theorem in $R^n$, Mem. Amer. Math. Soc., 80, no. 405, Providence, 1989, 2–5 pp. | MR
[34] Efremov P. V., Kamenev G. K., Lotov A. B., “Postroenie ekonomnogo opisaniya mnogogrannika na osnove teorii dvoistvennosti vypuklykh mnozhestv”, Dokl. RAN, 399:5 (2004), 594–596 | MR