Measure of stability for a finite cooperative game with a parametric optimality principle (from Pareto to Nash)
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1258-1264 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A finite cooperative game in normal form is considered. Its optimality principle is specified with the help of a parameter such that Pareto optimality and Nash equilibrium correspond to two extreme parameter values. The limiting level of perturbations in the coefficients of payoff functions that do not give rise to new efficient situations is studied.
@article{ZVMMF_2006_46_7_a9,
     author = {S. E. Bukhtoyarov and V. A. Emelichev},
     title = {Measure of stability for a~finite cooperative game with a~parametric optimality principle (from {Pareto} to {Nash)}},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1258--1264},
     year = {2006},
     volume = {46},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a9/}
}
TY  - JOUR
AU  - S. E. Bukhtoyarov
AU  - V. A. Emelichev
TI  - Measure of stability for a finite cooperative game with a parametric optimality principle (from Pareto to Nash)
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1258
EP  - 1264
VL  - 46
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a9/
LA  - ru
ID  - ZVMMF_2006_46_7_a9
ER  - 
%0 Journal Article
%A S. E. Bukhtoyarov
%A V. A. Emelichev
%T Measure of stability for a finite cooperative game with a parametric optimality principle (from Pareto to Nash)
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1258-1264
%V 46
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a9/
%G ru
%F ZVMMF_2006_46_7_a9
S. E. Bukhtoyarov; V. A. Emelichev. Measure of stability for a finite cooperative game with a parametric optimality principle (from Pareto to Nash). Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1258-1264. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a9/

[1] Bukhtoyarov S. E., Emelinev V. A., “Konechnye koalitsionnye igry: parametrizatsiya printsipa optimalnosti (“ot Pareto do Nesha”) i ustoichivost obobschenno-effektivnykh situatsii”, Dokl. HAH Belarusi, 46:6 (2002), 36–38 | MR | Zbl

[2] Bukhtoyarov S. E., Emelinev V. A., Stepanishina Yu. V., “Voprosy ustoichivosti vektornykh diskretnykh zadach s parametricheskim printsipom optimalnosti”, Kibernetika i sistemnyi analiz, 2003, no. 4, 155–166 | MR | Zbl

[3] Nesh Dzh., “Beskoalitsionnye igry”, Matrichnye igry, 1961, 205–221, Fizmatgiz, M.

[4] Leontev V. K., “Ustoichivost v lineinykh diskretnykh zadachakh”, Probl. kibernetiki, 35, 1979, 169–184 | MR

[5] Emelichev V. A., Podkopaev D. P., “O kolichestvennoi mere ustoichivosti vektornoi zadachi tselochislennogo programmirovaniya”, Zh vychisl. matem. i matem. fiz., 38:11 (1998), 1801–1805 | MR | Zbl

[6] Emelichev V. A., Girlich E., Nikulin Yu., Podkopaev D. P., “Stability and regularization of vector problem of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[7] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982 | MR

[8] Bukhtoyarov S. E., Kuzmin K. G., “On stability in game problems of finding Nash set”, Comput. Sci. J. of Moldova, 12:3 (2004), 381–388 | MR