@article{ZVMMF_2006_46_7_a8,
author = {I. V. Konnov},
title = {Descent method for nonsmooth variational inequalities},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1251--1257},
year = {2006},
volume = {46},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a8/}
}
I. V. Konnov. Descent method for nonsmooth variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1251-1257. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a8/
[1] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988 | MR
[2] Patriksson M., Nonlinear programming and variational inequality problems: a unified approach, Kluwer, Dordrecht, 1999 | MR | Zbl
[3] Konnov I. V., Combined relaxation methods for variational inequalities, Springer, Berlin, 2001 | MR
[4] Facchinei F., Pang J.-S., Finite-dimensional variational inequalities and complementarity problems, Springer, Berlin, 2003
[5] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR
[6] Fukushima M., “Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems”, Math. Program., 53:1 (1992), 99–110 | DOI | MR | Zbl
[7] Konnov I. V., “Priblizhennye metody dlya pryamo-dvoistvennykh variatsionnykh neravenstv smeshannogo tipa”, Izv. vuzov. Matematika, 2000, no. 12, 55–66 | MR | Zbl
[8] Konnov I. V., “A note on Lagrangean dual problems of variational inequalities”, Numer. Meth. Solving Linear and Nonlinear Boundary Value Problems, DAS, Kazan, 2001, 83–90
[9] Konnov I. V., “Dvoistvennyi podkhod dlya odnogo klassa smeshannykh variatsionnykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 42:9 (2002), 1324–1337 | MR | Zbl
[10] Jiang H., Qi L., “Local uniqueness and convergence of iterative methods for nonsmooth variational unequalities”, J. Math. Analys. and Appl., 196:1 (1995), 314–331 | DOI | MR | Zbl
[11] Xu H., “Regularized gap function and D-gap function for nonsmoth variational inequalities”, Optimizat. and Related Topics, Kluwer, Dordrecht, 2001, 153–176 | MR | Zbl
[12] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl
[13] Konnov I. V., Metody nedifferentsiruemoi optimizatsii, Kazanskii un-t, Kazan, 1993
[14] Konnov I. V., Kum S., Lee G. M., “On convergence of descent methods for variational inequalities in a Hilbert space”, Math. Meth. Operat. Res., 55:3 (2002), 371–382 | DOI | MR | Zbl
[15] Konnov I. V., Pinyagina O. V., “$D$-gap functions and descent methods for a class of monotone equilibrium problems”, Lobachevskii J. Math., 13:1 (2003), 57–65 | MR | Zbl
[16] Konnov I. V., “Application of the proximal point method to nonmonotone equilibrium problems”, J. Optimizat. Theory and Appl., 119:2 (2003), 317–333 | DOI | MR | Zbl