Descent method for nonsmooth variational inequalities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1251-1257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A descent method with a gap function is proposed for a finite-dimensional variational inequality with nonintegrable and nonsmooth mapping. The convergence of the method with line search is established under strong monotonicity conditions on the underlying mapping.
@article{ZVMMF_2006_46_7_a8,
     author = {I. V. Konnov},
     title = {Descent method for nonsmooth variational inequalities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1251--1257},
     year = {2006},
     volume = {46},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a8/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - Descent method for nonsmooth variational inequalities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1251
EP  - 1257
VL  - 46
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a8/
LA  - ru
ID  - ZVMMF_2006_46_7_a8
ER  - 
%0 Journal Article
%A I. V. Konnov
%T Descent method for nonsmooth variational inequalities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1251-1257
%V 46
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a8/
%G ru
%F ZVMMF_2006_46_7_a8
I. V. Konnov. Descent method for nonsmooth variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1251-1257. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a8/

[1] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988 | MR

[2] Patriksson M., Nonlinear programming and variational inequality problems: a unified approach, Kluwer, Dordrecht, 1999 | MR | Zbl

[3] Konnov I. V., Combined relaxation methods for variational inequalities, Springer, Berlin, 2001 | MR

[4] Facchinei F., Pang J.-S., Finite-dimensional variational inequalities and complementarity problems, Springer, Berlin, 2003

[5] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[6] Fukushima M., “Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems”, Math. Program., 53:1 (1992), 99–110 | DOI | MR | Zbl

[7] Konnov I. V., “Priblizhennye metody dlya pryamo-dvoistvennykh variatsionnykh neravenstv smeshannogo tipa”, Izv. vuzov. Matematika, 2000, no. 12, 55–66 | MR | Zbl

[8] Konnov I. V., “A note on Lagrangean dual problems of variational inequalities”, Numer. Meth. Solving Linear and Nonlinear Boundary Value Problems, DAS, Kazan, 2001, 83–90

[9] Konnov I. V., “Dvoistvennyi podkhod dlya odnogo klassa smeshannykh variatsionnykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 42:9 (2002), 1324–1337 | MR | Zbl

[10] Jiang H., Qi L., “Local uniqueness and convergence of iterative methods for nonsmooth variational unequalities”, J. Math. Analys. and Appl., 196:1 (1995), 314–331 | DOI | MR | Zbl

[11] Xu H., “Regularized gap function and D-gap function for nonsmoth variational inequalities”, Optimizat. and Related Topics, Kluwer, Dordrecht, 2001, 153–176 | MR | Zbl

[12] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[13] Konnov I. V., Metody nedifferentsiruemoi optimizatsii, Kazanskii un-t, Kazan, 1993

[14] Konnov I. V., Kum S., Lee G. M., “On convergence of descent methods for variational inequalities in a Hilbert space”, Math. Meth. Operat. Res., 55:3 (2002), 371–382 | DOI | MR | Zbl

[15] Konnov I. V., Pinyagina O. V., “$D$-gap functions and descent methods for a class of monotone equilibrium problems”, Lobachevskii J. Math., 13:1 (2003), 57–65 | MR | Zbl

[16] Konnov I. V., “Application of the proximal point method to nonmonotone equilibrium problems”, J. Optimizat. Theory and Appl., 119:2 (2003), 317–333 | DOI | MR | Zbl