Two-dimensional discrete groups with finite fundamental regions and their physical and humanitarian interpretations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1331-1344 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The crystallographic model is the global model of the universe that has been most intensively developed in recent years. Its best-known authors are R.J. Hauy, E.S. Fedorov, H. Poincaré, B.N. Delaunay, N.V. Belov, and D.D. Ivanenko. The latest astronomical observations suggest that the universe is a compact locally Euclidean manifold constructed on a Platonic dodecahedron. Each atom in the periodic table (which is represented as a regular or semiregular isogon) is also represented as a compact locally Euclidean manifold; i.e., the atoms and the universe are topologically identical. The periodic table itself is divided into four blocks ($s$, $p$, $d$, and $f$). The atoms in the $d$ and $f$ blocks have five-fold and sevenfold symmetry, respectively. These constructions are underlain by discrete groups with a finite fundamental region (crystallographic groups), which first appeared in Islamic ornaments and only several centuries later were discovered by scientists. Thus, science and religion have come to the modern (crystallographic) picture of the world. After an appropriate redesign, all the major principles of this picture can be represented in the two-dimensional case, which is done in this paper.
@article{ZVMMF_2005_45_8_a0,
     author = {R. V. Galiulin},
     title = {Two-dimensional discrete groups with finite fundamental regions and their physical and humanitarian interpretations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1331--1344},
     year = {2005},
     volume = {45},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a0/}
}
TY  - JOUR
AU  - R. V. Galiulin
TI  - Two-dimensional discrete groups with finite fundamental regions and their physical and humanitarian interpretations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1331
EP  - 1344
VL  - 45
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a0/
LA  - ru
ID  - ZVMMF_2005_45_8_a0
ER  - 
%0 Journal Article
%A R. V. Galiulin
%T Two-dimensional discrete groups with finite fundamental regions and their physical and humanitarian interpretations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1331-1344
%V 45
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a0/
%G ru
%F ZVMMF_2005_45_8_a0
R. V. Galiulin. Two-dimensional discrete groups with finite fundamental regions and their physical and humanitarian interpretations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1331-1344. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a0/

[1] Galois E., “Analuse d'un memoire sur la resolution algebraique des equations”, Bull. des Sci. Mathem., 13 (1830), 271

[2] Hauy R. J., Traite de mineralogy, v. 4, Paris, 1801

[3] Krylov A. N., “Napoleon i nauka”, Moi vospominaniya, M., 1945, 517–532

[4] Jordan C., “Memoire sur les groups de movements. I; II”, Ann. Math., 2 (1868), 167–215; (1869), 322–345

[5] Galiulin P. B., “Sistemy Delone kak geometricheskaya osnova diskretnogo mira”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 790–801 | MR | Zbl

[6] Fedorov E. S., “Nachala ucheniya o figurakh”, Zap. SPb Mineralog. ob-va, 21 (1885)

[7] Puankare A., Izbrannye trudy, v. 3, Teoriya Fuksovykh grupp, Izd-vo AN SSSR, M., 1974, 9–62

[8] Vinberg E. B., Shvartsman O. V., “Diskretnye gruppy dvizhenii prostranstv postoyannoi krivizny”, Sovr. probl. matem., 29, VINITI, M., 1988, 147–259

[9] Gadolin A. V., “Vyvod vsekh kristallograficheskikh sistem i ikh podrazdelenie iz odnogo obschego nachala”, Zap. SPb. Mineralog. ob-va, 4 (1867), 112–200

[10] Galiulin R. V., “Teoriya prostykh form kristallov kak pravilnykh sistem Delone v prostranstvakh postoyannoi krivizny”, Kristallografiya, 44:5 (1999), 775–785

[11] Galiulin R. V., Lektsii po geometricheskim osnovam kristallografii, Chelyabinsk, 1989

[12] Galiulin R. V., “Idealnye kristally v prostranstvakh postoyannoi krivizny”, Kristallografiya, 39:4 (1994), 581–585 | Zbl

[13] Delone B. N., “Fedorov kak geometr”, Tr. In-ta istorii estestvoznaniya i tekhn., 10 (1956), 5–12 | Zbl

[14] Fedorova L. V., Nashi budni, goresti i radosti, Nauchnoe nasledstvo, 20, Nauka, M., 1992

[15] Fedorov E. S., Osnovy differentsialnogo i integralnogo ischisleniya, Imperatorskaya akad. nauk, SPb., 1903

[16] Fedorov E. S., “Perfektsionizm”, Izv. SPb. Biol. lab., 8:1 (1906), 25–65; 2, 9–63

[17] Galiulin R. V., “Nepravilnosti v sudbe teorii pravilnosti”, Kristallografiya, 48:6 (2003), 965–980 | MR

[18] Bezikovich Ya. S., Delone B. N., Zhitomirskii O. K., “Zadachi s resheniyami dlya povtoreniya kursa po elementarnoi matematike”: Delone B. N., Zhitomirskii O. K., Geometriya i trigonometriya, Nauchn. knigoizdat, L., 1929

[19] Delone B., Zhitomirskii O., Zadachnik po geometrii, Fizmatgiz, M., 1959

[20] Smirnova I. M., Smirnov V. A., Geometriya. 7–9, Prosveschenie, M., 2001 | Zbl

[21] Galiulin R. V., “Kristallograficheskaya kartina mira”, Uspekhi fiz. nauk, 172:2 (2002), 229–233

[22] Fedorov E. S., “Popytka podvesti atomnye vesa pod odin zakon”, Kristallografiya, LGI, L., 1955

[23] Delone N. B., “Ridbergovskie atomy”, Sorosovskii obozrevatelnyi zh., 1998, no. 4, 64–70

[24] Dmitriev I. S., Simmetriya v mire molekul, Khimiya, M., 1976

[25] Galiulin R. V., Nardov A. V., Shustov A. V., Delone B. N., “Rol normalizatora kristallicheskogo klassa v teorii prostykh form kristallov”, Dokl. AN SSSR, 231:3 (1976), 607–610 | MR | Zbl

[26] Feinman R., Leiton R., Sends M., v. 7, Feinmanovskie lektsii po fizike, Mir, M., 1977 | MR

[27] Galiulin R. V., Kristallograficheskaya geometriya, Nauka, M., 1984 | MR | Zbl

[28] Godunov S. K., “Ob ideyakh, ispolzuemykh pri postroenii raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 787–789 | MR | Zbl

[29] Delone B. N., “Teoriya planigonov”, Izv. AN SSSR. Ser. Matem., 23:3 (1959), 365–386 | MR | Zbl

[30] Lord I. A., Uilson S. B., Vvedenie v differentsialnuyu geometriyu i topologiyu, Izhevsk, 2003

[31] International Tables for Crystallography, v. 1, D. Reidel, Dordrecht, 1983

[32] Eavrenson J., Wondratchchek H., “The extraordinary orbits of the 17 plane groups”, Z. Kristallogr., 143 (1975), 473–484

[33] Prok I., “Discrete transformation groups and polyhedra by computers”, Geometrie in Ingng Education, 1997, 139–145

[34] Golovanova A. N., Galiulin P. B., “Modelirovanie obuvi poverkhnostyami raznoi krivizny”, Mineralogiya i zhizn, Materialy II konf. (Syktyvkar, 2000)

[35] Fedorov E. S., “O stoletnei godovschine so dnya rozhdeniya N. I. Lobachevskogo”, Zap. SPb Mineralog. ob-va. Ser. 2, 30 (1893)

[36] Belov N. V., “Srednevekovaya mavritanskaya ornamentika v ramkakh grupp simmetrii”, Kristallografiya, 1:5 (1956), 612–613

[37] Mamedov Kh. S., “Crystallographic patterns”, Comput. and Math. Appls. B, 12:3/4 (1986), 511–529 | DOI | MR

[38] Ivanenko D. D., Galiulin R. V., “Quasicrystal model of the universe. Problems on high energy physics and field theory”, Tr. XVII Mezhdunar. seminara po fiz. vysokikh energii, Protvino, 1995, 180–186

[39] Mamedov Kh. S., Amiraslanov I. R., Nadzhafov G. N., Mursaliev A. A., Pamyat ornamentov, Azerneshr, Baku, 1981

[40] Nikulin V. V., Shafarevich I. R., Geometrii i gruppy, Nauka, M., 1983 | MR

[41] Matveev C. B., Fomenko A. T., “Izoenergeticheskie poverkhnosti gamiltonovykh sistem, perechislenie trekhmernykh mnogoobrazii v poryadke vozrastaniya ikh slozhnosti i vychislenie zamknutykh giperbolicheskikh mnogoobrazii”, Uspekhi matem. nauk, 43:1 (1988), 5–22 | MR | Zbl

[42] Galiulin R. V., “Vysshaya kristallografiya almaza”, Materialovedenie, 1999, no. 6, 2–5

[43] Lifshits A. M., Lozovik Yu. E., “Kvazidvumernye kristallicheskie klastery na sfere: metod topologicheskogo opisaniya”, Kristallografiya, 47:2 (2002), 214–223

[44] Prokhorov M. E., Mozhet li nasha Vselennaya byt konechnoi i topologicheski slozhnoi? 30.12.2003 20:14, GAISh, M., 2003

[45] Galimov E. M., “Fenomen zhizni”, Nauka v Rossii, 2003, no. 5, 36–41

[46] Galiulin R. V., Veremeichik T. F., “Kristallograficheskaya spektroskopiya”, Netraditsionnye voprosy geologii, MGU, M., 2004, 69–75

[47] Leskov S., Materiya ustroena sovsem ne tak, kak my dumali, http://www.inauka.ru/discovery/article48925.html

[48] Fortov V. E., Khrapak A. G., Khrapak S. A. i dr., “Pylevaya plazma”, Uspekhi fiz. nauk, 174:5 (2004), 495–543

[49] Fersman A. E., E. S. Fedorov i ego rol v nauke, Nauka, M., 1920

[50] Kollinz G., V mire nauki, 2004, no. 10, 52–61

[51] Galiulin R. V., “Dvumernye diskretnye gruppy i ikh fizicheskii smysl”, Prikl. geometriya, postroenie raschetnykh setok i vysokoproizvoditelnye vychisleniya, Tr. Vseros. konf., v. 1, VTs RAN, M., 2004, 209–219