On the solution of optimal control problems with intermediate conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 1033-1043 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach to the numerical solution of optimal control problems with nonseparated intermediate conditions is proposed. It is based on the transfer method for the intermediate conditions that elaborates the boundary conditions transfer method. Formulas and an algorithm for the numerical solution of the problem are presented. By way of example, two optimal control problems (a linear and a nonlinear one) are solved.
@article{ZVMMF_2005_45_6_a6,
     author = {K. R. Aida-Zade},
     title = {On the solution of optimal control problems with intermediate conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1033--1043},
     year = {2005},
     volume = {45},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a6/}
}
TY  - JOUR
AU  - K. R. Aida-Zade
TI  - On the solution of optimal control problems with intermediate conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1033
EP  - 1043
VL  - 45
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a6/
LA  - ru
ID  - ZVMMF_2005_45_6_a6
ER  - 
%0 Journal Article
%A K. R. Aida-Zade
%T On the solution of optimal control problems with intermediate conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1033-1043
%V 45
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a6/
%G ru
%F ZVMMF_2005_45_6_a6
K. R. Aida-Zade. On the solution of optimal control problems with intermediate conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 1033-1043. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a6/

[1] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[2] Aschepkov L. T., “Optimalnoe upravlenie sistemoi s promezhutochnymi usloviyami”, Prikl. matem. i mekhanika, 45:2 (1981), 215–222

[3] Vasileva O. O., Mizukami K., “Dinamicheskie protsessy, opisyvaemye kraevoi zadachei: neobkhodimye usloviya optimalnosti i metody resheniya”, Izv. RAN. Teoriya i sistemy upravleniya, 2000, no. 1, 95–100 | MR

[4] Braison A., Kho Yu-Shi, Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972

[5] Moszynski K., “A method of solving the boundary value problem for a system of linear ordinary differential equation”, Algorytmy. Warshava, 11:3 (1964), 25–43 | MR

[6] Aida-zade K. P., “Chislennyi metod resheniya sistem differentsialnykh uravnenii s nelokalnymi usloviyami”, Vychisl. tekhnologii, 1, Novosibirsk, 2004, 11–25 | Zbl

[7] Antonik V. G., Srochko V. A., “K resheniyu zadach optimalnogo upravleniya na osnove metodov linearizatsii”, Zh. vychisl. matem. i matem. fiz., 32:7 (1992), 979–991 | MR | Zbl

[8] Aida-zade K. P., “Chislennyi metod vosstanovleniya parametrov dinamicheskoi sistemy”, Kibernetika i sistemnyi analiz, 3, Kiev, 2004, 101–108 | MR | Zbl

[9] Abramov A. A., “Variant metoda progonki”, Zh. vychisl. matem. i matem. fiz., 1:2 (1961), 349–351 | MR | Zbl

[10] Gill F., Myurrei U., Rait M., Prakticheskaya optimizatsiya, Mir, M., 1985 | MR