An all-integer cutting method for linear constrained optimization problems on arrangements
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 254-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method for solving linear constrained optimization problems on arrangements is proposed and validated. It is based on the idea of cutting methods. The use of cutting inequalities of a special form makes it possible to avoid the negative effect of computational errors, which is characteristic of the greater part of methods based on this approach. The form of correct integer cuts for the problems under consideration is established, and the algorithm based on such cuts is proved to be finite.
@article{ZVMMF_2005_45_2_a7,
     author = {T. N. Barbolina and O. A. Emets},
     title = {An all-integer cutting method for linear constrained optimization problems on arrangements},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {254--261},
     year = {2005},
     volume = {45},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a7/}
}
TY  - JOUR
AU  - T. N. Barbolina
AU  - O. A. Emets
TI  - An all-integer cutting method for linear constrained optimization problems on arrangements
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 254
EP  - 261
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a7/
LA  - ru
ID  - ZVMMF_2005_45_2_a7
ER  - 
%0 Journal Article
%A T. N. Barbolina
%A O. A. Emets
%T An all-integer cutting method for linear constrained optimization problems on arrangements
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 254-261
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a7/
%G ru
%F ZVMMF_2005_45_2_a7
T. N. Barbolina; O. A. Emets. An all-integer cutting method for linear constrained optimization problems on arrangements. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 254-261. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a7/

[1] Sergienko I. V., Kaspshitskaya M. F., Modeli i metody resheniya na EVM kombinatornykh zadach optimizatsii, Nauk. dumka, Kiev, 1981 | MR

[2] Stoyan Yu. G., Єmets' O. O., Teoriya i metodi evklidovoï kombinatornoï optimizatsiï, In-t sistemnikh doslidzhen osviti, Kiïv, 1993

[3] Emets O. A., “Ob optimizatsii lineinykh i vypuklykh funktsii na evklidovom kombinatornom mnozhestve poliperestanovok”, Zh. vychisl. matem. i matem. fiz., 34:6 (1994), 855–869 | MR | Zbl

[4] Yakovlev C. B., “Teoriya vypuklykh prodolzhenii funktsii na vershinakh vypuklykh mnogogrannikov”, Zh. vychisl. matem i matem. fiz., 34:7 (1994), 1112–1119 | MR | Zbl

[5] Pichugina O. S., Metody i algoritmy resheniya nekotorykh zadach optimizatsii na mnozhestvakh sochetanii i razmeschenii, Dis. ...kand. fiz-.matem. nauk, Kharkov, 1996, 169 pp.

[6] Stoyan Yu. G., Yakovlev C. B., Emets O. A., Valuiskaya O. A., “Postroenie vypuklykh prodolzhenii dlya funktsii, zadannykh na gipersfere”, Kibernetika i sistemnyi analiz, 1998, no. 2, 1–11

[7] Єmets' O. O., Єmets' Є. M., “Vidsikannya v liniinikh chastkovo kombinatornikh zadachakh evklidovoï kombinatornoï optimizatsiï”, Dop. HAH Ukraïni, 2000, no. 9, 105–109

[8] Emets O. A., Nedobachii S. I., Kolechkina L. N., “Neprivodimaya sistema ogranichenii kombinatornogo mnogogrannika v drobno-lineinoi zadache optimizatsii na perestanovkakh”, Diskretnaya matem., 13:1 (2001), 110–118 | MR | Zbl

[9] Valuiskaya O. A., Emets O. A., Romanova N. G., “Vypukloe prodolzhenie mnogochlenov, zadannykh na poliperestanovkakh, modifitsirovannym metodom Stoyana–Yakovleva”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 591–596 | MR | Zbl

[10] Єmets' O. O., Roskladka O. V., Nedobachii S. S., “Nezvidna sistema obmezhen dlya zagalnogo mnogogrannika rozmischen”, Ukr. matem. zhurnal, 55:1 (2003), 3–11 | MR

[11] Єmets' O. O., Barbolina T. M., “Rozv'yazuvannya zadach neliniinoï umovnoï optimizatsiï na rozmischennyakh metodov vidiskannya”, Ukr. matem. zhurnal, 55:5 (2003), 604–611 | MR

[12] Emets O. A., Barbolina T. N., “Reshenie lineinykh zadach optimizatsii na razmescheniyakh metodom otsecheniya”, Kibernetika i sistemnyi analiz, 2003, no. 6, 131–141 | MR | Zbl

[13] Lyashenko H. H., Karagodova E. A., Chernikova N. V., Shor N. Z., Lineinoe i nelineinoe programmirovanie, Vischa shkola, Kiev, 1965

[14] Korbut A. A., Finkelshtein Yu. Yu., Diskretnoe programmirovanie, Nauka, M., 1969 | MR | Zbl