$\mathbb L^p$-stimates for solutions to initial and initial-boundary value problems for a semilinear system of reaction-diffusion equations in the limit of $t\to+\infty$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 1, pp. 53-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_1_a5,
     author = {M. O. Korpusov and A. G. Sveshnikov},
     title = {$\mathbb L^p$-stimates for solutions to initial and initial-boundary value problems for a~semilinear system of reaction-diffusion equations in the limit of $t\to+\infty$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {53--75},
     year = {2002},
     volume = {42},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a5/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. G. Sveshnikov
TI  - $\mathbb L^p$-stimates for solutions to initial and initial-boundary value problems for a semilinear system of reaction-diffusion equations in the limit of $t\to+\infty$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 53
EP  - 75
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a5/
LA  - ru
ID  - ZVMMF_2002_42_1_a5
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. G. Sveshnikov
%T $\mathbb L^p$-stimates for solutions to initial and initial-boundary value problems for a semilinear system of reaction-diffusion equations in the limit of $t\to+\infty$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 53-75
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a5/
%G ru
%F ZVMMF_2002_42_1_a5
M. O. Korpusov; A. G. Sveshnikov. $\mathbb L^p$-stimates for solutions to initial and initial-boundary value problems for a semilinear system of reaction-diffusion equations in the limit of $t\to+\infty$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 1, pp. 53-75. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a5/

[1] Vasileva A. B., Butuzov V. F., Singulyarno vozmuschennye uravneniya v kriticheskom sluchae, Izd-vo MGU, M., 1978

[2] Escobedo M., Zuazua E., “Large time behavior for convection-diffusion equations in $\mathbb L^N$”, J. Functional Analys., 100 (1991), 119–161 | DOI | MR | Zbl

[3] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR

[4] Krylov N. V., Lektsii po ellipticheskim i parabolicheskim uravneniyam v prostranstvakh Geldera, Nauchn. kniga, Novosibirsk, 1998 | MR

[5] Korpusov M. O., Sveshnikov A. G., “K voprosu ob asimptoticheskom povedenii resheniya zadachi Koshi dlya sistemy uravnenii ambipolyarnoi diffuzii”, Zh. vychisl. matem. i matem. fiz., 41:5 (2001), 783–795 | MR | Zbl

[6] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[8] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[9] Vladimirov B. C., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[10] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl