@article{ZVMMF_1997_37_1_a5,
author = {A. S. Antipin},
title = {Calculation of fixed points of extremal mappings by gradient-type methods},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {42--53},
year = {1997},
volume = {37},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_1_a5/}
}
TY - JOUR AU - A. S. Antipin TI - Calculation of fixed points of extremal mappings by gradient-type methods JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1997 SP - 42 EP - 53 VL - 37 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_1_a5/ LA - ru ID - ZVMMF_1997_37_1_a5 ER -
A. S. Antipin. Calculation of fixed points of extremal mappings by gradient-type methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 1, pp. 42-53. http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_1_a5/
[1] Antipin A. S., “On convergence of proximal methods to fixed points of extremal mappings”, Operat. Res. Proc., Springer, Berlin–Heidelberg, 1994, 11–15
[2] Antipin A. S., “O skhodimosti i otsenkakh skorosti skhodimosti proksimalnykh metodov k nepodvizhnym tochkam ekstremalnykh otobrazhenii”, Zh. vychisl. matem. i matem. fiz., 35:5 (1995), 688–704 | MR | Zbl
[3] Antipin A. S., “O vychislenii nepodvizhnykh tochek ekstremalnykh otobrazhenii”, Dokl. RAN, 342:3 (1995), 1–4 | MR
[4] Fan Ky, “A minimax inequality and applications”, Inequalities, v. III, Acad. Press, 1972, 103–113 | MR
[5] Aubin J.-P., Ekeland I., Applied nonlinear analysis, John Wiley Sons, New York, 1984 | MR | Zbl
[6] Aubin J.-P., Frankowska H., Set valued analysis, Birkhäuser, Boston etc., 1990 | MR | Zbl
[7] Antipin A. S., “Upravlyaemye proksimalnye differentsialnye sistemy dlya resheniya sedlovykh zadach”, Differents. ur-niya, 28:11 (1992), 1846–1861 | MR | Zbl
[8] Antipin A. S., “Sedlovye gradientnye protsessy, upravlyaemye s pomoschyu obratnykh svyazei”, Avtomatika i telemekhan., 1994, no. 3, 12–23 | MR | Zbl
[9] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR
[10] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR
[11] Ferris M. C., “Finite termination of the proximal point algorithm”, Math. Program., 50 (1991), 359–366 | DOI | MR | Zbl
[12] Levitin E. S., Teoriya vozmuschenii v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1992 | MR | Zbl
[13] Antipin A. S., “Obratnaya zadacha optimizatsii: postanovka zadachi i podkhody k ee resheniyu”, Obratnye zadachi matem. programmirovaniya, VTs RAN, M., 1992, 4–58
[14] Korpelevich G. M., “Ekstragradientnyi metod dlya otyskaniya sedlovykh tochek i drugikh zadach”, Ekonomika i matem. metody, 1976, no. 12(4), 747–756 | Zbl
[15] Antipin A. S., “Ob odnom metode poiska sedlovykh tochek modifitsirovannoi funktsii Lagranzha”, Ekonomika i matem. metody, 1977, no. 13(3), 560–565 | MR | Zbl