An algorithm for approximating polyhedra
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 4, pp. 134-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_4_a14,
     author = {G. K. Kamenev},
     title = {An algorithm for approximating polyhedra},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {134--147},
     year = {1996},
     volume = {36},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_4_a14/}
}
TY  - JOUR
AU  - G. K. Kamenev
TI  - An algorithm for approximating polyhedra
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 134
EP  - 147
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_4_a14/
LA  - ru
ID  - ZVMMF_1996_36_4_a14
ER  - 
%0 Journal Article
%A G. K. Kamenev
%T An algorithm for approximating polyhedra
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 134-147
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_4_a14/
%G ru
%F ZVMMF_1996_36_4_a14
G. K. Kamenev. An algorithm for approximating polyhedra. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 4, pp. 134-147. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_4_a14/

[1] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR

[2] Bushenkov V. A., “Iteratsionnyi metod postroeniya ortogonalnykh proektsii vypuklykh mnogogrannykh mnozhestv”, Zh. vychisl. matem. i matem. fiz., 25:9 (1985), 1285–1292 | MR | Zbl

[3] Kamenev G. K., “Issledovanie odnogo algoritma approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 608–616 | MR | Zbl

[4] Lotov A. V., “Generalized reachable sets method in multiple criteria problems”, Methodology and Saftware for Interactive Decision Support, 337, Springer, New York etc., 1986, 250–256

[5] Kamenev G. K., Metody approksimatsii vypuklykh tel mnogogrannikami i ikh primenenie dlya postroeniya i analiza obobschennykh mnozhestv dostizhimosti, Dis. ...kand. fiz.-matem. nauk, MFTI, M., 1986

[6] Rodzhers K., Ukladki i pokrytiya, Mir, M., 1968 | MR

[7] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[8] Gruber P. M., “Approximation of convex bodies”, Convexity and its Applic., Birkhauser, Basel etc., 1983, 131–162 | MR

[9] Chernykh O. L., “Postroenie vypukloi obolochki mnozhestva tochek v vide sistemy lineinykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 32:8 (1992), 1213–1228 | MR | Zbl

[10] Preparata F., Sheimos M., Vychislitelnaya geometriya. Vvedenie, Mir, M., 1989 | MR | Zbl

[11] Chernykh O. L., “Postroenie vypukloi obolochki mnozhestva tochek pri priblizhennykh vychisleniyakh”, Zh. vychisl. matem. i matem. fiz., 28:9 (1988), 1386–1396 | MR | Zbl

[12] Blyashke V., Krug i shar, Nauka, M., 1967 | MR

[13] Brooks J. N., Strantzen J. B., Blaschke's rolling theorem in $\mathbb{R}^n$, Mem. Amer. Math. Soc., 80, no. 405, 1980 | MR

[14] Kamenev G. K., “Ob effektivnosti khausdorfovykh algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 33:5 (1993), 796–805 | MR | Zbl

[15] John F., “Extremum problems with inequalities as subsidiary conditions”, Courant Anniversary Vol., New York, 1948, 187–204 | MR | Zbl