The use of lower bounds in minimization by the interior-point method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 7, pp. 978-983
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{ZVMMF_1994_34_7_a2,
author = {I. S. Litvinchev},
title = {The use of lower bounds in minimization by the interior-point method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {978--983},
year = {1994},
volume = {34},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_7_a2/}
}
TY - JOUR AU - I. S. Litvinchev TI - The use of lower bounds in minimization by the interior-point method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1994 SP - 978 EP - 983 VL - 34 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_7_a2/ LA - ru ID - ZVMMF_1994_34_7_a2 ER -
I. S. Litvinchev. The use of lower bounds in minimization by the interior-point method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 7, pp. 978-983. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_7_a2/
[1] Karmarkar N., “A new polynomial-time algorithm for linear programming”, Combinatorica, 4:4 (1984), 373–395 | DOI | MR | Zbl
[2] Gonzaga C. C., “Path-following methods for linear programming”, SIAM Rev., 34:2 (1992), 167–224 | DOI | MR | Zbl
[3] Todd M. J., “A Dantzig-Wolfe-like variant of Karmarkar's interior-point linear programming algorithm”, Operat. Res., 38:6 (1990), 1006–1018 | DOI | MR | Zbl