@article{ZVMMF_1992_32_3_a0,
author = {L. V. Maslovskaya},
title = {The conditions for the applicability of the generalized {Cholesky} algorithm},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {339--347},
year = {1992},
volume = {32},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_3_a0/}
}
TY - JOUR AU - L. V. Maslovskaya TI - The conditions for the applicability of the generalized Cholesky algorithm JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1992 SP - 339 EP - 347 VL - 32 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_3_a0/ LA - ru ID - ZVMMF_1992_32_3_a0 ER -
L. V. Maslovskaya. The conditions for the applicability of the generalized Cholesky algorithm. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 3, pp. 339-347. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_3_a0/
[1] Maslovskaya L. V., “Obobschennyi algoritm Kholesskogo dlya smeshannykh diskretnykh analogov ellipticheskikh kraevykh zadach”, Zh. vychisl. matem. i matem. fiz., 29:1 (1989), 67–74 | MR
[2] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984 | MR
[3] Kobozeva A. A., Maslovskaya L. V., “Programmnaya realizatsiya obobschennogo algoritma Kholesskogo dlya nekotorykh smeshannykh diskretnykh analogov ellipticheskikh kraevykh zadach”, Zh. vychisl. matem. i matem. fiz., 30:3 (1990), 420–429 | MR
[4] Johnson C., “Ort the convergence of a mixed finite element method for plate bending problems”, Numer. Math., 21 (1973), 43–62 | DOI | MR | Zbl
[5] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl