Modification of the Fedorov-Wynn procedure for determining the elliptic span of a given system of vectors
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 8, pp. 1243-1250
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_8_a11,
     author = {V. P. Kozlov and S. V. Svistunov},
     title = {Modification of the {Fedorov-Wynn} procedure for determining the elliptic span of a given system of vectors},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1243--1250},
     year = {1991},
     volume = {31},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_8_a11/}
}
TY  - JOUR
AU  - V. P. Kozlov
AU  - S. V. Svistunov
TI  - Modification of the Fedorov-Wynn procedure for determining the elliptic span of a given system of vectors
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 1243
EP  - 1250
VL  - 31
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_8_a11/
LA  - ru
ID  - ZVMMF_1991_31_8_a11
ER  - 
%0 Journal Article
%A V. P. Kozlov
%A S. V. Svistunov
%T Modification of the Fedorov-Wynn procedure for determining the elliptic span of a given system of vectors
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 1243-1250
%V 31
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_8_a11/
%G ru
%F ZVMMF_1991_31_8_a11
V. P. Kozlov; S. V. Svistunov. Modification of the Fedorov-Wynn procedure for determining the elliptic span of a given system of vectors. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 8, pp. 1243-1250. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_8_a11/

[1] Sylvester J. J., “A question in the geometry of situation”, Quart. J. Pure and Appl. Math., 1 (1857), 79

[2] Blumenthal L. M., Wahlin G. E., “On the spherical surface of smallest radius enclosing a bounded subset of $n$-dimensional euclidean space”, Amer. Math. Soc. Bull., 47 (1941), 771–777 | DOI | MR | Zbl

[3] Kozlov V. P., Svistunov S. V., “Approksimatsiya mnozhestva vozmozhnykh znachenii spektralnykh koeffitsientov yarkosti estestvennykh landshaftov”, Biosfera i klimat po dannym kosmich. issl., I Vses. konf., Baku, 1982, 206–208

[4] Barnes E. R., “An algorithm for separating patterns by ellipsoids”, IBM J. Res. Development, 26 (1982), 759–764 | DOI | MR | Zbl

[5] Kalinin V. H., Shikin E. V., “O postroenii ellipsoidov ekstremalnogo ob'ema”, Izv. AN SSSR. Tekhn. kibernetika, 1987, no. 4, 60–65 | MR

[6] Kozlov V. P., Svistunov S. V., “Algoritm vydeleniya ekstremalnykh spektrov koeffitsienta yarkosti estestvennykh landshaftov”, XIV Nauchno-tekhn. konf. molodykh uchenykh, Gos. optich. in-t, L., 1982, 33–35

[7] Wynn H., “Results in the theory and construction of $\mathrm{D}$-optimum experimental designs”, J. Roy. Statist. Soc. B, 42 (1972), 133–147 | MR

[8] Silvey S. D., Sibson R., “Discussion of DR Wynn's and DR Laycock's papers”, J. Roy. Statist. Soc. B, 42 (1972), 174–175; 181–183

[9] Fedorov V. V., Teoriya optimalnogo eksperimenta, Nauka, M., 1971

[10] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988 | MR

[11] Gershovich V. I., Shor N. Z., “Metod ellipsoidov, ego obobscheniya i prilozheniya”, Kibernetika, 1982, no. 5, 61–69 | MR | Zbl

[12] Post M. J., “A minimum spanning ellipse algorithm”, Proc. 22nd Ann. Symp. Found. Comput. Sci., N. Y., 1981, 115–122

[13] Danzer L., Laugwitz D., Lenz H., “Über das Löwnershce Ellipsoid und sein Analogen unter den einem Eikörper einbeschriebenen Ellipsoiden”, Arch. Math., 8 (1957), 214–219 | DOI | MR | Zbl

[14] Kendal M. Dzh., Styuart A., Mnogomernyi statisticheskii analiz i vremennye ryady, Nauka, M., 1976 | MR

[15] Fedchenko P. P., Kondratev K. Ya., Spektralnaya otrazhatelnaya sposobnost nekotorykh pochv, Gidrometeoizdat, L., 1981