The influence of mathematical viscosity on the difference solution in problems of two-temperature gas dynamics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 1, pp. 242-245
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that if the nature of the flows in a single-fluid two-temperature heat conducting medium is determined by the presence of strong heat fluxes and weak shock waves, then the difference solution does not depend on how the artificial viscosity is distributed between the ion and the electron pressures. However, if strong shock waves and weak heat fluxes are present, the mathematical viscosity should be attributed entirely to the ion pressure.
@article{ZVMMF_1983_23_1_a34,
author = {R. G. Dautov and E. V. Ermolin and A. M. Mokeev},
title = {The influence of mathematical viscosity on the difference solution in problems of two-temperature gas dynamics},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {242--245},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_1_a34/}
}
TY - JOUR AU - R. G. Dautov AU - E. V. Ermolin AU - A. M. Mokeev TI - The influence of mathematical viscosity on the difference solution in problems of two-temperature gas dynamics JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1983 SP - 242 EP - 245 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_1_a34/ LA - ru ID - ZVMMF_1983_23_1_a34 ER -
%0 Journal Article %A R. G. Dautov %A E. V. Ermolin %A A. M. Mokeev %T The influence of mathematical viscosity on the difference solution in problems of two-temperature gas dynamics %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1983 %P 242-245 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_1_a34/ %G ru %F ZVMMF_1983_23_1_a34
R. G. Dautov; E. V. Ermolin; A. M. Mokeev. The influence of mathematical viscosity on the difference solution in problems of two-temperature gas dynamics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 1, pp. 242-245. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_1_a34/