Hyperenergetic and Hypoenergetic Graphs
Zbornik radova, Tome 14 (2011) no. 22, p. 113

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The energy $E=E(G)$ of a graph $G$ is the sum of the absolute values of the eigenvalues of $G$. The motivation for the introduction of this invariant comes from chemistry, where results on $E$ were obtained already in the 1940's. A graph $G$ with $n$ vertices is said to be ``hyperenergetic'' if $E>2n-2$, and to be ``hypoenergetic'' if $E(G)
Classification : 05C50 05C90 92E10
Keywords: energy (of graph), hyperenergetic graph, hypoenergetic graph, spectrum (of graph), chemistry
@article{ZR_2011_14_22_a4,
     author = {Ivan Gutman},
     title = {Hyperenergetic and {Hypoenergetic} {Graphs}},
     journal = {Zbornik radova},
     pages = {113 },
     publisher = {mathdoc},
     volume = {14},
     number = {22},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZR_2011_14_22_a4/}
}
TY  - JOUR
AU  - Ivan Gutman
TI  - Hyperenergetic and Hypoenergetic Graphs
JO  - Zbornik radova
PY  - 2011
SP  - 113 
VL  - 14
IS  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZR_2011_14_22_a4/
LA  - en
ID  - ZR_2011_14_22_a4
ER  - 
%0 Journal Article
%A Ivan Gutman
%T Hyperenergetic and Hypoenergetic Graphs
%J Zbornik radova
%D 2011
%P 113 
%V 14
%N 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZR_2011_14_22_a4/
%G en
%F ZR_2011_14_22_a4
Ivan Gutman. Hyperenergetic and Hypoenergetic Graphs. Zbornik radova, Tome 14 (2011) no. 22, p. 113 . http://geodesic.mathdoc.fr/item/ZR_2011_14_22_a4/