Hyperenergetic and Hypoenergetic Graphs
Zbornik radova, Tome 14 (2011) no. 22, p. 113 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The energy $E=E(G)$ of a graph $G$ is the sum of the absolute values of the eigenvalues of $G$. The motivation for the introduction of this invariant comes from chemistry, where results on $E$ were obtained already in the 1940's. A graph $G$ with $n$ vertices is said to be ``hyperenergetic'' if $E>2n-2$, and to be ``hypoenergetic'' if $E(G)
Classification : 05C50 05C90 92E10
Keywords: energy (of graph), hyperenergetic graph, hypoenergetic graph, spectrum (of graph), chemistry
@article{ZR_2011_14_22_a4,
     author = {Ivan Gutman},
     title = {Hyperenergetic and {Hypoenergetic} {Graphs}},
     journal = {Zbornik radova},
     pages = {113 },
     publisher = {mathdoc},
     volume = {14},
     number = {22},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZR_2011_14_22_a4/}
}
TY  - JOUR
AU  - Ivan Gutman
TI  - Hyperenergetic and Hypoenergetic Graphs
JO  - Zbornik radova
PY  - 2011
SP  - 113 
VL  - 14
IS  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZR_2011_14_22_a4/
LA  - en
ID  - ZR_2011_14_22_a4
ER  - 
%0 Journal Article
%A Ivan Gutman
%T Hyperenergetic and Hypoenergetic Graphs
%J Zbornik radova
%D 2011
%P 113 
%V 14
%N 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZR_2011_14_22_a4/
%G en
%F ZR_2011_14_22_a4
Ivan Gutman. Hyperenergetic and Hypoenergetic Graphs. Zbornik radova, Tome 14 (2011) no. 22, p. 113 . http://geodesic.mathdoc.fr/item/ZR_2011_14_22_a4/