Computational Interrpretations of Logics
Zbornik radova, Tome 12 (2009) no. 20, p. 159
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The fundamental connection between logic and computation,
known as the Curry-Howard correspondence or formulae-astypes
and proofs-as-programs paradigm, relates logical and computational
systems. We present an overview of computational interpretations
of intuitionistic and classical logic:
- intuitionistic natural deduction - A-calculus;
- intuitionistic sequent calculus - A Gtz-calculus;
- classical natural deduction - AJ.L-calculus;
- classical sequent calculus - XJ.Lj:L-calculus.
In this work we summarise the authors' contributions in this field.
Fundamental properties of these calculi, such as confluence, normalisation
properties, reduction strategies call-by-value and call-by-name,
separability, reducibility method, A-models are in focus. These fundamental
properties and their counterparts in logics, via the CurryHoward
correspondence, are discussed.
@article{ZR_2009_12_20_a4,
author = {Silvia Ghilezan and Silvia Likavec},
title = {Computational {Interrpretations} of {Logics}},
journal = {Zbornik radova},
pages = {159 },
year = {2009},
volume = {12},
number = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZR_2009_12_20_a4/}
}
Silvia Ghilezan; Silvia Likavec. Computational Interrpretations of Logics. Zbornik radova, Tome 12 (2009) no. 20, p. 159 . http://geodesic.mathdoc.fr/item/ZR_2009_12_20_a4/